
エントリーの編集

エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
ROC曲線とAUCについて定義と関係性をまとめたよ - Qiita
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています

- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
ROC曲線とAUCについて定義と関係性をまとめたよ - Qiita
はじめに こちらの記事の内容を1枚絵にまとめたものになります。以下、文章で少しだけ補足します。 正... はじめに こちらの記事の内容を1枚絵にまとめたものになります。以下、文章で少しだけ補足します。 正解率系の各種指標について (参考)こちらの記事より引用させて頂きました。 クラス分類モデルの性能評価には様々な評価指標が存在しますが、上記の各種指標の計算で諸々算出されます。 用語を覚える際に混乱してしまいがちですが、以下の関係性さえ理解しておけば丸暗記しなくても思い出せます。 前一文字:正解か不正解かを示す -> T or F 後一文字:モデルからの予測分類を示す -> P or N 偽陽性は、FP(間違って陽性判定した数) / FP + TN(陰性全体の母数) 真陽性は、TP(正しく陽性判定した数) / TP + FN(陽性全体の母数) テキストでROC曲線とAUCをまとめる ①ROC曲線ってなんだ? クラス分類するためのスコア閾値を外部の変数として変化させ、偽陽性率を横軸に、真陽性率を縦