Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article?
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? SpaceNetと呼ばれるデータセットを用いて、衛星画像から建物を検出する畳み込みニューラルネットワークを学習した 学習したニューラルネットワークにより、IoU=0.602 の精度で建物領域を抽出できることを確認した 衛星画像と既存のGISデータに対して機械学習を適用することにより、広域の衛星画像からの情報抽出を大幅に効率化できる可能性を示した Source on GitHub 1 機械学習による衛星写真の自動解析 近年、AIブームの影響もあり、衛星画像の自動解析に注目が集まりつつあります。 衛星画像や航空写真は、地図作成や変化抽出など
画像関係のKaggleコンテストで、Kerasを使いつつコードを書いていたところ、前処理などで工夫しても厳しそうなレベルでメモリ不足に悩まされました。(しかし、一方で精度を上げるためになるべく多くのデータを使いたい) 他の人はどうやっているんだろう?と他人のカーネルを見ていたところ、KerasのSequentialクラスにfit_generator関数という、バッチ単位でデータを扱ってくれる(=瞬間的なメモリが少なくて済む)関数を使っているようでした。 過去に読んだ書籍だと、この関数は使っていなかったので、触りながら色々調べてみます。 簡単な例で試してみる。 MNISTで試してみます。モデルのコード自体は、以前書いたGoogle colaboratoryを試してみる(Keras & MNIST)のものをほぼそのまま使います。 X.shapeが(60000, 1, 28, 28)、y.sha
以下のshell sessionでは (base) root@f19e2f06eabb:/#は入力促進記号(comman prompt)です。実際には数字の部分が違うかもしれません。この行の#の右側を入力してください。 それ以外の行は出力です。出力にエラー、違いがあれば、コメント欄などでご連絡くださると幸いです。 それぞれの章のフォルダに移動します。 dockerの中と、dockerを起動したOSのシェルとが表示が似ている場合には、どちらで捜査しているか間違えることがあります。dockerの入力促進記号(comman prompt)に気をつけてください。 ファイル共有または複写 dockerとdockerを起動したOSでは、ファイル共有をするか、ファイル複写するかして、生成したファイルをブラウザ等表示させてください。参考文献欄にやり方のURLを記載しています。 dockerを起動したOSの
1. Layout Optimizer ソースコード:tensorflow/core/grappler/optimizers/layout_optimizer.cc TensorFlowがデフォルトで採用するデータフォーマットはNHWC形式ですが、GPUに最適なデータフォーマットはNCHW形式です。 このため、GPUで実行するノードについてはNCHW形式のデータフォーマットで実行するように計算グラフを変形することで、GPUで最適な演算が行えるようにします。 なお、計算グラフを変形するときに、必要に応じてNCHW→NHWCまたはNHWC→NCHWのデータフォーマット変換を行うためのTransposeノードを挿入し、計算グラフ内でデータフォーマットの一貫性が取れていることを保証します。 2. Model Pruner ソースコード:tensorflow/core/grappler/optimi
環境 windows10 64bit cpu: Ryzen7 1700X gpu: GTX1080Ti CUDA9.0 cuDNN7.3.1 for cuda9.0 python3.6 tensorflow-gpu 1.11.0 keras 2.2.4 やったこと jupyter notebookで実行後にgc.collect() jupyter notebookで実行後にdel model 1つのclassにまとめてjupyter notebookで実行後インスタンスをdelする pyファイルにまとめてjupyter notebookから%runで呼ぶ terminalでpyファイルを実行 pycharmでpyファイルを実行 何故やったか GPU使った画像認識をjupyter notebookでやろうとしたんですが、2回目以降学習が止まってしまって困りました。nvidia-smiでメモリ
自作のPCにUbuntu18.04とTensorFlowをインストールした内容を紹介します。 ■PCの構成とセットアップ 構成は以下の通りです。 MB:Asrock Fatal1ty Z270 Gaming-ITX/ac グラフィック出力:HDMI,DisplayPort(2台の4Kのモニターに対応) Tunderbolt 3 ( (USB Type-C)、Ultra M.2(PCIe Gen3 x 4) CPU:Intel Corei7-7700、メモリ:DDR4 8GBx2 SSD:M.2 2280 512GB HDD:STA3 2TB VGA: GTX1050Ti 4GB(CUDA用GPU) BIOS更新・設定 モニターはMB(マザーボード)のグラフィック出力に接続します。 PC起動後、表示がなければGPUのVGAカードの端子にディスプレイを接続しBios設定画面で、Priority
概要 日本語の形態素解析(MeCab)のようなことを英語でもやりたいのでApache OpenNLPを使用する 環境 OS: Windows7 64bit 言語: Java8 IDE: Eclipse4.6.1 目的 MeCabをコマンドラインで使用すると 今日はいい天気ですね。 ↓ ↓ 今日 「名詞,副詞可能,*,*,*,*,今日,キョウ,キョー」 は 「助詞,係助詞,*,*,*,*,は,ハ,ワ」 いい 「形容詞,自立,*,*,形容詞・イイ,基本形,いい,イイ,イイ」 天気 「名詞,一般,*,*,*,*,天気,テンキ,テンキ」 です 「助動詞,*,*,*,特殊・デス,基本形,です,デス,デス」 ね 「助詞,終助詞,*,*,*,*,ね,ネ,ネ」 。 「記号,句点,*,*,*,*,。,。,。」 と形態素に分け、形態素の情報が表示される ※ipadic辞書を使用した場合、 「品詞、品詞細分類1
import numpy as np import chainer from time import time import matplotlib.pyplot as plt %matplotlib inline loops = 10 # for taking average verc_size = 10 ** np.arange(1, 7) # i n_samples = 10 ** np.arange(1, 7) # j t_choice = np.zeros((len(verc_size), len(n_samples))) t_alias = np.zeros((len(verc_size), len(n_samples))) t_aliasv = np.zeros((len(verc_size), len(n_samples))) for i in range(len(verc_
以下のshell sessionでは (base) root@f19e2f06eabb:/#は入力促進記号(comman prompt)です。実際には数字の部分が違うかもしれません。この行の#の右側を入力してください。 それ以外の行は出力です。出力にエラー、違いがあれば、コメント欄などでご連絡くださると幸いです。 それぞれの章のフォルダに移動します。 dockerの中と、dockerを起動したOSのシェルとが表示が似ている場合には、どちらで捜査しているか間違えることがあります。dockerの入力促進記号(comman prompt)に気をつけてください。 ファイル共有または複写 dockerとdockerを起動したOSでは、ファイル共有をするか、ファイル複写するかして、生成したファイルをブラウザ等表示させてください。参考文献欄にやり方のURLを記載しています。 複写の場合は、dockerを
以下のshell sessionでは (base) root@f19e2f06eabb:/#は入力促進記号(comman prompt)です。実際には数字の部分が違うかもしれません。この行の#の右側を入力してください。 それ以外の行は出力です。出力にエラー、違いがあれば、コメント欄などでご連絡くださると幸いです。 それぞれの章のフォルダに移動します。 dockerの中と、dockerを起動したOSのシェルとが表示が似ている場合には、どちらで捜査しているか間違えることがあります。dockerの入力促進記号(comman prompt)に気をつけてください。 ファイル共有または複写 dockerとdockerを起動したOSでは、ファイル共有をするか、ファイル複写するかして、生成したファイルをブラウザ等表示させてください。参考文献欄にやり方のURLを記載しています。 複写の場合は、dockerを
概要 AWS LambdaでMeCabを動かそうと思ったら、思いのほか大変だったので今後の自分のために手順をまとめた。 (MeCabとは日本語の自然言語処理によく使われるオープンソースの形態素解析エンジン。詳しくは上記の作者のサイトへ。) 参考にさせてもらったサイト https://shogo82148.github.io/blog/2017/12/06/mecab-in-lambda/ http://marmarossa.hatenablog.com/entry/2017/02/03/223423 他にもたくさん「mecab lambda」で片っ端から検索かけて読み漁ったのだけど、もはやどこを読んだのかも覚えていない。上記二つの記事はとにかく作業スタートから完了するまでの間、ブラウザで開かれていた。 結論から述べると一番上の記事の通りにやればいいだけだったのだが、正直自分が次回この作業を
KerasでF1スコアをモデルのmetrics(評価関数)に入れて訓練させてたら、えらい低い値が出てきました。「なんかおかしいな」と思ってよく検証してみたら、とんでもない穴があったので書いておきます。 環境:Keras v2.2.4 要点 KerasのmetricsにF1スコアを入れることはできるが、調和平均で出てくる値をバッチ間の算術平均で計算しているので正確な値ではない 正確な値を計算したかったらmetricsではなく、コールバックでエポックの最後に一括で求めるべき F1スコアとは Precision-recallのトレードオフの最適解を求めるための尺度。特に精度が意味をなさなくなる歪んだデータに対して有効。F1スコアについて知っている方は飛ばしていいです。 歪んだデータとは 2クラス分類を考えるとしましょう。設定は猫と犬の分類、メールがスパムかスパムではないか、なんでもいいです。2ク
以下のshell sessionでは (base) root@f19e2f06eabb:/#は入力促進記号(comman prompt)です。実際には数字の部分が違うかもしれません。この行の#の右側を入力してください。 それ以外の行は出力です。出力にエラー、違いがあれば、コメント欄などでご連絡くださると幸いです。 それぞれの章のフォルダに移動します。 dockerの中と、dockerを起動したOSのシェルとが表示が似ている場合には、どちらで捜査しているか間違えることがあります。dockerの入力促進記号(comman prompt)に気をつけてください。 ##ファイル共有または複写 dockerとdockerを起動したOSでは、ファイル共有をするか、ファイル複写するかして、生成したファイルをブラウザ等表示させてください。参考文献欄にやり方のURLを記載しています。 複写の場合は、docke
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く