You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session. Dismiss alert
今日は昨日に引き続き SciPy and NumPy Optimizing & Boosting your Python Programming の中から scikit-learn を使った例を軽く説明します。クラスタリングについてはすでに食べられるキノコを見分けるやクラスタリングの結果を再利用するといった記事で説明しましたし scikit-learn によるクラスタリング でも取り扱ってきましたから機械学習の中でもすっかりお馴染みの手法かと思います。 scikit-learn でのクラスタリング ポピュラーな kmeans と比較して多くのデータ点を有するコア点を見つける DBSCAN アルゴリズムは、コアが定義されると指定された半径内内でプロセスは反復します。ノイズを多く含むデータに対して、しばしば kmeans と比較される手法です。 原著においてもこれらの手法を比較し可視化していま
前回は scikit-learn に実装されている機械学習の手法をざっくりと書いてみたのですけれども、それなりに需要がありそうなので今日から scikit-learn を使った機械学習のサンプルコードを書きつつ、その手法の理解と実践に迫ってみたいと思います。 まずは以前にもやった K 平均法によってクラスタリングをする例を挙げていきます。 K 平均法はクラスタリングの中でも基本的な手法で、シンプルで高速に動作しますし、入門にも最適です。動作についての説明は毎回おすすめしているのですがこのあたりがわかりやすいです。 クラスタリングする対象としてはやはり株価データを利用します。 株価のデータは 無料で誰でも入手することができる 企業の「業績」を示す指標となるリアルなデータである 定量的なデータであるため分析しやすい といった特長があるため扱いやすいのです。 企業の業績と株価は密接な関係にありま
今回の記事は一応前回の続きなのですが、 scikit-learn による機械学習を利用して、実際に未来を予測する話を書いていきたいと思います。 なにはともあれ、まずは以下の図をみてください。 今回も実験対象のデータとして株価データを利用します。 上の図に挙げたのは弊社 (DTS) の株価であり、本物のデータです。 図にあるように「過去の株価の変化から結果どうなったのか」という情報を、機械学習を利用して計算機に学習させ、それをもとに将来の株価を予測してみます。 決定木アルゴリズム 今回は数ある分類の手法の中から決定木 (デジジョン・ツリー) を利用します。手法の選択理由は以前に書いた記事を参考にしてください。 決定木自体の説明は Wikipedia あたりを読んでいただくと早いかと思います。 また scikit-learn に実装されている決定木についての説明は公式ドキュメントにあります。
2016.09.14 処理時間のバラつきについて追記しました scikit-learnのSVC(rbfカーネルとlinearカーネル)とLinearSVCの処理速度を比較してみました. 利用したデータはRのkernlabパッケージに含まれているspamデータです. 説明変数は4601サンプル,57次元, ラベルはspam:1813サンプル,nonspam:2788サンプルです. サンプル数,次元数を変えた時の結果は以下の通りです. SVCのlinearカーネルが遅すぎますね. ついついカーネル種別まで含めてグリッドサーチしてしまいたくなりますが, きちんとLinearSVCを使ったほうが良さそうです. 検証用コードは以下. 処理時間計測の都合でパラメータCを振っています. また特徴量選択(次元削減)はRandomForestのfeature importanceを利用しました. これは適当
モチベーション DeepLearningを簡単に書けることで最近話題のChainerだけど、いまいちAPIがまだ洗練されていない気がしたのでscikit-learn likeに使えるようにしてみた。 成果物 -> https://github.com/lucidfrontier45/scikit-chainer , https://pypi.python.org/pypi/scikit-chainer 方針 scikit-learnと同じようにmodel.fit(X, y)やmodel.predict(X), model.score(X, y)のように使えるようにする。 実装 そんなに長くないので全部貼っつける。 まずは基底クラス。sklearn.base.BaseEstimatorに相当します。 from abc import ABCMeta, abstractmethod from c
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 「OpenCV-Python Tutorials」についての訳に関連して、他の書籍と比較を行いました。 ###OpenCV入門 OpenCV-Pythonチュートリアル入門 OpenCV-Pythonを始めてみよう OpenCV-PythonをWindowsにインストールする OpenCVをwindowsで使えるようにする。 OpenCV-PythonをFedoraにインストールする OpenCVをFedoraで使えるようにする。 ###OpenCVでのGUIの特色 画像操作を始めてみよう 画像を読み込むこと、表示すること、保存すること
はじめに Pythonで機械学習といえばscikit-learnですが、scikit-learnを使うにはnumpyやscipyといった大きめのライブラリを入れる必要があります。でも、プログラムでほんのちょこっとだけ機械学習のモデルを使って分類したいって場合だと、わざわざそういう重いもの入れたくないなーと思うときがあります。scikit-learnで学習したものをnumpy, scipy, scikit-learnなしに使って分類処理ができたらなーって。 そこで今回はscikit-learnの決定木 (DecisionTreeClassifier) やRandom forest (RandomForestClassifier) からif-then形式のコードを生成するものを紹介します。 コード https://github.com/ikegami-yukino/misc/blob/mast
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く