ここ1〜2年くらいで、業務やプライベートのデータ分析・データサイエンスで参考にした本(と一部本じゃないもの)をまとめてみました(注:もちろん全部読んでいます).*1. なお, あくまでワタシ個人(@shinyorke)の見解に基づいた独自解釈であり、所属組織・チームの意向とは関係ありません(とだけ最初に断っておきます). サクッとまとめると 「レベル感(はじめて・経験者)」だけででなく,「エンジニア面を鍛える or 理論を固める」の軸で考えると良い書籍・学び方に出会える確率上がる エンジニアでも理論でもどっちから初めても良い, がどちらかが得意な方が絶対幸せ(≒片方だけじゃお話にならない可能性) 個人的なオススメは「機械学習図鑑」「前処理大全」「機械学習のための特徴量エンジニアリング」そして「試して学ぶ機械学習」です. おしながき サクッとまとめると おしながき 対象読者&執筆者について