タグ

ブックマーク / qiita.com/Spooky_Maskman (1)

  • LDAによるトピック解析 with Gensim - Qiita

    はじめに 今回は、Latent Dirichlet Allocation(潜在的ディリクレ配分法、以下「LDA」と略)と呼ばれるトピックモデルについて取り上げます。 特に記事では、LDA というトピックモデルを扱う上で押さえておくべき、トピックモデルやコーパスの概念に触れながら、前処理を含めた分析の流れやモデルの評価方法などについて、実装を通じて理解を深めていくことを目的とします。 また併せて、記事では、結果の可視化の手法についてもいくつか紹介したいと思います。 分析の流れとしては、ストップワードなどの文章の前処理の後、Gensim を用いて、文章をいくつかのトピックに分類していき、最後に WordCloud と pyLDAvis により結果の可視化を行っていきます。 目次 トピックモデルについて 分析環境と事前準備 モジュールの設定とデータのインポート 前処理 辞書とコーパスの作成

    LDAによるトピック解析 with Gensim - Qiita
  • 1