タグ

DCGANに関するni66lingのブックマーク (8)

  • Conditional DCGANで画像生成 - kumilog.net

    GANの一種であるDCGANとConditional GANを使って画像を生成してみます。 GANは、Generative Adversarial Networks(敵性的生成ネットワーク)の略で、Generator(生成器)とDiscriminator(判別器)の2つネットワークの学習によって、ノイズから画像を生成するアルゴリズムです。 生成器Gは、判別器Dに物と誤認識させるような画像を生成し、判別器Dは、物か偽物かを見分ける役割があります。 GAN GANの仕組みについては、こちらの記事がとても参考になります。 また、GANは2014年にIan Goodfellow氏に提案してから多数の関連論文が発表されています。 出典:GitHub - hindupuravinash/the-gan-zoo: A list of all named GANs! DCGAN GANの学習は難しいの

    Conditional DCGANで画像生成 - kumilog.net
  • GANについて概念から実装まで ~DCGANによるキルミーベイベー生成~ - Qiita

    @triwave33さんの良記事に触発され、GANに対しての関心が高まり、自分でもなにかアウトプットできないかなと思ったので、今回はキルミーベイベーの画像生成を行いました。 この記事では、GANについて基礎から解説し、最後にはDCGANを使ってキルミーベイベーの画像を生成することを目標としています。 以前、以下のような記事 Kerasでキルミーアイコン686枚によるキルミー的アニメ絵分類 を使ってKerasの勉強をし、面白いなと思ったので、 今回はDCGANを使って分類ではなく生成を行おうと思います。 また、潜在変数(ノイズ)に関して詰まったので、そこに関して掘り下げます。 ついでに、転置畳み込みに関しても少し触れています。 GAN関連の良記事としては 今さら聞けないGAN(1) 基構造の理解 今さら聞けないGAN (2) DCGANによる画像生成 はじめてのGAN があります。 実装は

    GANについて概念から実装まで ~DCGANによるキルミーベイベー生成~ - Qiita
  • ディープラーニングで新しいポケモン作ろうとしたら妖怪が生まれた - bohemia日記

    こんにちは。ぼへみあです。 先日はポケモンの個体値判別の記事を書いたらかつてないほどバズって驚きました。 今では、スクリーンショットを撮ったり、常駐してゲーム画面に被せるタイプの個体値チェッカーアプリがたくさん出てきてるので、分度器勢は消え去ったようです。 被せるタイプはとても便利で使っているのですが、基的に入力は全て自分で行う必要があり、少し面倒です。 コンピュータビジョン研究者見習いとしては、全てローカルの画像認識で行わせたいところです。 そこで手始めに、ポケモンの種類を画像認識で判別するためにポケモンデータセットを作ったのですが、寄り道してポケモンから妖怪ができてしまったので、そのお話です。 ポケモンデータセットの作成 機械学習でクラス分類を行わせるのためには、そのドメインのデータセットが必要です。 以前、おそ松さんを見分けた時も6000枚弱のデータセットをスクリーンショットをたく

    ディープラーニングで新しいポケモン作ろうとしたら妖怪が生まれた - bohemia日記
  • Generative models

    This post describes four projects that share a common theme of enhancing or using generative models, a branch of unsupervised learning techniques in machine learning. In addition to describing our work, this post will tell you a bit more about generative models: what they are, why they are important, and where they might be going. One of our core aspirations at OpenAI is to develop algorithms and

    Generative models
  • TensorFlowによるDCGANでアイドルの顔画像生成 - すぎゃーんメモ

    アイドル顔識別のためのデータ収集 をコツコツ続けて それなりに集まってきたし、これを使って別のことも…ということでDCGANを使ったDeep Learningによるアイドルの顔画像の「生成」をやってみた。 まだだいぶ歪んでいたりで あまりキレイじゃないけど…。顔画像を多く収集できているアイドル90人の顔画像からそれぞれ120件を抽出した合計10800件をもとに学習させて生成させたもの。 分類タスクとは逆方向の変換、複数のモデル定義などがあってなかなか理解が難しい部分もあったけど、作ってみるとそこまで難しくはなく、出来上がっていく過程を見るのが楽しいし とても面白い。 DCGANとは "Deep Convolutional Generative Adversarial Networks"、略してDCGAN。こちらの論文で有名になった、のかな? [1511.06434] Unsupervise

    TensorFlowによるDCGANでアイドルの顔画像生成 - すぎゃーんメモ
  • Chainerで顔イラストの自動生成 - Qiita

    PFNのmattyaです。chainerを使ったイラスト自動生成をやってみました(上の画像もその一例です)。 20日目の@rezoolabさんの記事(Chainerを使ってコンピュータにイラストを描かせる)とネタが被っちゃったので、記事ではさらに発展的なところを書いていきたいと思います。一緒に読んでいただくとよいかと。 概要 Chainerで画像を生成するニューラルネットであるDCGANを実装した→github safebooruから顔イラストを集めてきて学習させた 学習済みモデルをconvnetjsで読み込ませて、ブラウザ上で動くデモを作成した→こちら(ローディングに20秒程度かかります) アルゴリズム 今回実装したDCGAN(元論文)はGenerative Adversarial Networkというアルゴリズムの発展形です。GANの目標は、学習データセットと見分けがつかないようなデ

    Chainerで顔イラストの自動生成 - Qiita
  • ディープラーニングであり得そうな間取り画像を生成させてみる - LIFULL Creators Blog

    こんにちは。おうちハッカー@リッテルラボラトリーの石田です。 今日は、HOME'Sで大量に保持している間取り画像を使って、ディープラーニングの手法の一つであるDCGANを使い、あり得そうな間取りを生成させてみました。 DCGANとは? Deep Convolutional Generative Adversial Networkの略で、画像を生成する手法です。 データセットを元に画像を生成する生成器と、生成された画像かデータセット画像かを見分ける判別機の2つのニューラルネットワークを交互に学習させることで、 データセットのような画像を生成します。 論文はこちらです。 またNextremerさま主催の機械学習勉強会で、発表されていた方の資料もあります。 Deep Convolutional Generative Adversarial Networks - Nextremer勉強会資料 昨年

    ディープラーニングであり得そうな間取り画像を生成させてみる - LIFULL Creators Blog
  • Chainerを使ってコンピュータにイラストを描かせる - Qiita

    概要 つい一ヶ月前に提案された深層学習モデルであるDeep Convolutional Generative Adversarial Networks (以下DCGAN)をchainer上で実装した. 70万枚もの大量のイラストを使ってDCGANにイラストらしさを学習させた. 得られたモデルを利用して,コンピュータにイラストを描かせてみた. 結果としては結構上手く行った.物と見分けがつかないというレベルではないものの,DCGANは正常にイラストらしい画像を生成できている. ネタが盛大に被って当につらい はじめに DCGANという画像を生成するニューラルネットをchainerで実装しました。恐るべきことに、今までにない美麗さで二次元イラストも自動生成できます…!https://t.co/C8P8GbzWN1 pic.twitter.com/DWwGhF9itw — おそるべし抹茶パワー

    Chainerを使ってコンピュータにイラストを描かせる - Qiita
  • 1