並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 21 件 / 21件

新着順 人気順

prmlの検索結果1 - 21 件 / 21件

  • はじめに — 機械学習帳

    import torch x = torch.tensor([1., -1.]) w = torch.tensor([1.0, 0.5], requires_grad=True) loss = -torch.dot(x, w).sigmoid().log() loss.backward() print(loss.item()) print(w.grad)

      はじめに — 機械学習帳
    • Hiroshi Takahashi

      Skip to the content. 機械学習の研究者を目指す人へ 機械学習の研究を行うためには、プログラミングや数学などの前提知識から、サーベイの方法や資料・論文の作成方法まで、幅広い知識が必要になります。本レポジトリは、学生や新社会人を対象に、機械学習の研究を行うにあたって必要になる知識や、それらを学ぶための書籍やWebサイトをまとめたものです。 目次 プログラミングの準備 Pythonを勉強しよう 分かりやすいコードを書けるようになろう 数学の準備 最適化数学を学ぼう 基本的なアルゴリズムとその実践 機械学習の全体像を学ぼう 基本的なアルゴリズムを学ぼう 深層学習の基礎を学ぼう scikit-learnやPyTorchのチュートリアルをやってみよう サーベイの方法 国際会議論文を読もう Google Scholarを活用しよう arXivをチェックしよう スライドの作り方 論文の

      • ディープラーニングの研究が進めばAIのブラックボックス問題は解決しますか?

        回答 (5件中の1件目) ディープラーニングは昔ニューラルネット(神経回路網)と言われていました。 モデルとなった神経回路網において、神経の結合、処理状態がわかれば考えていることがわかるのか?と言われればそれは無理ですね。これはブラックボックスです。 じゃ、考えていることがわかるようなニューラルネットは作れるかと問われれば、できないと断言はできない。 ちなみに三十年くらい前のAIの主要トピックスは。 エキスパートシステム これは専門家の知識を記述するもので内容はわかります。 ファジーシステム どこ行ったんでしょうね? ニューラルネット でした。

          ディープラーニングの研究が進めばAIのブラックボックス問題は解決しますか?
        • 統計・機械学習の理論を学ぶ手順 - Qiita

          社内向けに公開している記事「統計・機械学習の理論を学ぶ手順」の一部を公開します。中学数学がわからない状態からスタートして理論に触れるにはどう進めばいいのかを簡潔に書きました。僕が一緒に仕事をしやすい人を作るためのものなので、異論は多くあると思いますがあくまでも一例ですし、社員に強制するものではありません。あと項目の順番は説明のため便宜上こうなっているだけで、必ずしも上から下へ進めというわけでもありません。 (追記)これもあるといいのではないかというお声のあった書籍をいくつか追加しました。 数学 残念ながら、統計モデルを正しく用いようと思うと数学を避けることはできません。ニューラルネットワークのような表現力が高くて色々と勝手にやってくれるような統計モデルでも、何も知らずに使うのは危険です。必ず数学は学んでおきましょう。理想を言えば微分トポロジーや関数解析のような高度な理論を知っておくのがベス

            統計・機械学習の理論を学ぶ手順 - Qiita
          • 機械学習のパラメータチューニングを「これでもか!」というくらい丁寧に解説 - Qiita

            はじめに 私はこれまで機械学習のパラメータチューニングに関し、様々な書籍やサイトで学習を進めてきました。 しかしどれもテクニックの解説が主体のものが多く、 「なぜチューニングが必要なのか?」 という目的に関する記載が非常に少なかったため、体系的な理解に苦労しました。 この経験を後世に役立てられるよう、「初心者でも体系的に理解できる丁寧さ!」をモットーに記事にまとめたいと思います。 具体的には、 1. パラメータチューニングの目的 2. チューニングの手順とアルゴリズム一覧 3. Pythonでの実装手順 (SVMでの分類を例に) の手順で解説を進めます。 独自解釈も含まれるため、間違っている点等ございましたら指摘頂けると有難いです。 なお、文中のコードはこちらのGitHubにもアップロードしております。 2021/9/6追記:LightGBMのチューニング実行例追加 以下の記事に、Ligh

              機械学習のパラメータチューニングを「これでもか!」というくらい丁寧に解説 - Qiita
            • 異常検知入門と手法まとめ - Qiita

              異常検知について勉強したのでまとめておきます。 参考文献 下記文献を大いに参考にさせていただきました: [1] Ruff, Lukas, et al. "A Unifying Review of Deep and Shallow Anomaly Detection." arXiv preprint arXiv:2009.11732 (2020). [2] 井手. "入門 機械学習による異常検知―Rによる実践ガイド" コロナ社(2015) [3] 井手,杉山. "異常検知と変化検知 (機械学習プロフェッショナルシリーズ)" 講談社サイエンティフィク(2015) [4] 比戸. "異常検知入門" Jubatus Casual Talks #2(2013) [5] Pang, Guansong, et al. "Deep learning for anomaly detection: A rev

                異常検知入門と手法まとめ - Qiita
              • 全くのゼロから「駆け出しデータサイエンティスト」を育てる方法論 - 渋谷駅前で働くデータサイエンティストのブログ

                (Image by Pixabay) 「データサイエンティスト」の第一次ブーム勃興から6年余り、人工知能ブームに便乗した第二次ブームで人口に膾炙してから3年余り、気が付いたら何やかんや言われながらもデータサイエンティスト及びその類似職が、じわじわと日本国内の産業各分野・企業各社に広まりつつあるように僕の目には映ります。 そういう背景がある中で、ここ1年ぐらいの間にそこかしこで目立つようになってきたのが「ゼロからデータサイエンティストを育てたいのだがどうしたら良いか」という相談や議論。割とあるあるなのが「取引先がデータサイエンティストを採用して商談の席に同席させるようになって、彼らがデータサイエンスの知識を駆使してビシバシ突っ込んでくるのだが、こちらにデータサイエンティストがいないので対応できない」みたいなお話。これは実はUSでも同様だと聞くので*1、案外洋の東西を問わない課題なのかもしれま

                  全くのゼロから「駆け出しデータサイエンティスト」を育てる方法論 - 渋谷駅前で働くデータサイエンティストのブログ
                • Chainer を振り返って

                  2015 年 4 月 12 日に Chainer の最初のコードをコミットしてから,およそ 4 年半と少しが経ちました.はじめのはじめは軽い気持ちで書きはじめたコードでしたが,今では一線級の研究を立派に支えるまでになりました.深層学習フレームワークの世界も当時とは様変わりして(当時は TensorFlow も PyTorch もなかったわけですから,本当に変わりました),思えば遠くにきたものです. 今日,PFN は社内の研究開発に用いる主なフレームワークを PyTorch に移行すると発表しました.会社にとってももちろんですが,業務としてはこの 4 年半,Chainer 一筋でやってきた自分にとっては特に,大きな転換点です. まず率直な感想として,Chainer の開発は本当に楽しかったです.書きはじめた頃は,深層学習フレームワーク競争の真っ只中で,Theano の上に乗っかるフレームワー

                  • 『ベイズ深層学習』が最高すぎた - 日常と進捗

                    今回は書評エントリー。 ちょうど今日の午前中に須山さんの『ベイズ深層学習』を読み終えた。 読了。 控えめに言って、スゴかった。 まじでボリュームたっぷりでものすごく読み応えのあった一冊だったと思う。 ベイズ機械学習に詳しくない人でも読めるし(簡単とは言ってない)ホントに全人類におすすめしたい。 pic.twitter.com/Lbfs6Rr9JM— コミさん (@komi_edtr_1230) January 15, 2020 ものすごく良かったのでここで全力で宣伝しようと思う。 概要 本書はベイズ統計と深層学習の組み合わせについて詳説した一冊で、頻度論に基づく線形回帰と確率分布の基礎の解説から始まり、そこから線形回帰やニューラルネットワークがベイズ的にどのように説明できるかについて展開、そこから深層学習のベイズ的な説明をしてガウス過程へとたどり着く構成となっている。 本書の魅力はなんとい

                      『ベイズ深層学習』が最高すぎた - 日常と進捗
                    • シリーズ一覧 - 共立出版

                      シリーズ一覧

                        シリーズ一覧 - 共立出版
                      • 失敗から学ぶ機械学習応用

                        社内勉強会での発表資料です。 「失敗事例を通じて、機械学習の検討で抑えるべきポイントを学ぶ」をコンセプトに作成しました。AI・機械学習を検討する広くの方々に活用していただけると幸いです。 あとがきを下記に書きました。よければこちらもご参照ください。 https://qiita.com/bezilla/items/1e1abac767e10d0817d1Read less

                          失敗から学ぶ機械学習応用
                        • 大学間コンソーシアム | 東京大学 数理・情報教育研究センター

                          数理・データサイエンス・AI教育強化拠点コンソーシアム MIセンターは、2022年度政府予算に盛り込まれた「数理・データサイエンス・AI教育の全国展開の推進」事業の東京大学における実施主体です。 同事業で選定された29大学(拠点校11大学、特定分野校18大学)のコンソーシアムの幹事校として、大学、産業界、研究機関等と幅広くネットワークを形成し、地域や分野における先進的教育モデルの拠点として、数理・データサイエンス・AIの実践的教育の全国普及に努めます。 同時に、この分野を牽引できる国際競争力のある人材および産学で活躍できるトップクラスのエキスパート人材の育成を目指します。 [コンソーシアムホームページ] 数理・データサイエンス・AIの活用事例動画 本動画集は数理・データサイエンス・AIリテラシーレベル教材の導入となるような活用事例を収集したものです。数理・データサイエンス・AIリテラシーレ

                          • Interpretable Machine Learning

                            Interpretable Machine Learning A Guide for Making Black Box Models Explainable. Christoph Molnar 2021-05-31 要約 機械学習は、製品や処理、研究を改善するための大きな可能性を秘めています。 しかし、コンピュータは通常、予測の説明をしません。これが機械学習を採用する障壁となっています。 本書は、機械学習モデルや、その判断を解釈可能なものにすることについて書かれています。 解釈可能性とは何かを説明した後、決定木、決定規則、線形回帰などの単純で解釈可能なモデルについて学びます。 その後の章では、特徴量の重要度 (feature importance)やALE(accumulated local effects)や、個々の予測を説明するLIMEやシャープレイ値のようなモデルに非依存な手法(mo

                            • 米Microsoftが機械学習のオリジナル教材を無償公開 AIとデータサイエンスについても順次リリース

                              機械学習の概要や歴史から、botやWebアプリの作成まで網羅した、初心者向けの全24回の学習教材を米MicrosoftがGitHub上に無償公開している。12時間程度で学べるという。

                                米Microsoftが機械学習のオリジナル教材を無償公開 AIとデータサイエンスについても順次リリース
                              • kaggle本で参考になった点のなぐり書き - ML_BearのKaggleな日常

                                これはなに? kaggle本を読んで血肉になった/したい点をなぐり書きにしたただの個人用メモです。ちゃんとした書評を書こうと思い続けてはや半月以上経過したので一旦書きました。 この箇条書きの記事だけ読んでも多分内容わからないと思うので、気になった点があればぜひ購入しましょう!読後すぐに書いた推薦ツイートは以下のとおりです。 kaggle本読み終わりました。初心者にも良い本だと思いますが、ExpertやMasterなりたての人が最も恩恵を得られそうだなと感じました。自分の今までのコンペ経験を思い返しつつ、その中では経験できなかった内容を学ぶことができ「賢者は歴史に学ぶ」が可能になった感があります。著者の方々に感謝です!— ML_Bear (@MLBear2) October 23, 2019 リンク Chap. 2 - タスクと評価指標 「しきい値の最適化」という概念 正例か負例のラベルを提

                                  kaggle本で参考になった点のなぐり書き - ML_BearのKaggleな日常
                                • パラメータ数10億!最新の巨大画像認識モデル「BiT」爆誕 & 解説 - Qiita

                                  オミータです。ツイッターで人工知能のことや他媒体で書いている記事など を紹介していますので、人工知能のことをもっと知りたい方などは気軽に@omiita_atiimoをフォローしてください! 2019年12月24日のクリスマスイブにarxiv上でGoogle Brainから新たな画像認識モデルが発表されました。その名も BiT(=Big Transfer)。その性能は2019年にGoogleが出したEfficientNet(拙著解説記事)を様々なデータセットで超えるほどで現在のState-of-The-Art になっています。驚くべきはそれだけでなく、なんとこのモデル、パラメータ数が10億にもおよぶ巨大なモンスターモデル になっています。そんなBiTについて早速この記事で解説していきたいと思います。バッチノームやドロップアウト、Weight Decayなどを使用していないという、 今までの画

                                    パラメータ数10億!最新の巨大画像認識モデル「BiT」爆誕 & 解説 - Qiita
                                  • Kaggleで勝つデータ分析の技術: 今までの機械学習本と全く違う最強の実務本 - nykergoto’s blog

                                    この度光栄なことに著者の @Maxwell さんから「Kaggleで勝つデータ分析の技術」 を献本いただきました。 私事ですがこのような形で献本頂いたのは初めての経験だったのでとてもうれしくまた恐縮している次第です。 光栄なことに @Maxwell_110 さんからKaggleで勝つデータ分析の技術を頂きました〜 目次の充実が話題になってましたがサラッと見ただけでも濃い内容満載で読むのワクワクです😆 https://t.co/VTKmsR5Z6s pic.twitter.com/yuRS72YyTs— ニューヨーカーGOTO (@nyker_goto) October 2, 2019 「せっかく本を頂いたので書評をかこう!!」と思ってここ数日読み進めていたのですが、この本が自分がここ一年ぐらいで読んだ機械学習に関連する本の中でもずば抜けて内容が濃くまた情報量の多い本であったため「これは僕

                                      Kaggleで勝つデータ分析の技術: 今までの機械学習本と全く違う最強の実務本 - nykergoto’s blog
                                    • ベイズ統計・ベイズ機械学習を始めよう | AIdrops

                                      ベイズ統計・ベイズ機械学習を始めよう コンピュータやネットワークの技術進化により,これまでにないほどの多種多様なデータを取り扱う環境が整ってきました.中でも統計学や機械学習は,限られたデータから将来を予測することや,データに潜む特徴的なパターンを抽出する技術として注目されています.これらのデータ解析を行うためのツールはオープンソースとして配布されていることが多いため,初学者でも手軽に手を出せるようになってきています. しかし,データ解析を目的に合わせて適切に使いこなすことは依然としてハードルが高いようです.この原因の一つが,統計学や機械学習が多種多様な設計思想から作られたアルゴリズムの集合体であることが挙げられます.毎年のように国際学会や産業界で新たな手法が考案・開発されており,一人のエンジニアがそれらの新技術を1つ1つキャッチアップしていくのは非常に困難になってきています. 1つの解決策

                                        ベイズ統計・ベイズ機械学習を始めよう | AIdrops
                                      • 「初手LightGBM」をする7つの理由 - u++の備忘録

                                        Kaggleなどのデータ分析コンペでテーブルデータを扱う場合、最近は取りあえずLightGBMを利用する場合が多いです。 本記事では、初手の機械学習アルゴリズムとして「LightGBM」*1を採用する理由を紹介します。あくまで2019年10月末時点での個人の主観なので、ご参考までにご覧いただければと思います。 1. 欠損値をそのまま扱える 2. カテゴリ変数の指定ができる 3. 特徴量のスケーリングが不要 4. feature importanceが確認できる 5. 精度が出やすく最終的なモデルとして残る可能性が高い 6. 比較的大きいデータも高速に扱える 7. 過去の経験からハイパーパラメータの勘所がある おわりに 初手としては、手の混んだ特徴量を作らずに、まずは何かしらの予測結果を生成したい場合も多いです。LightGBMは既存のデータセットを極力加工せずに利用するという観点で、特徴量

                                          「初手LightGBM」をする7つの理由 - u++の備忘録
                                        • ヤフーにおける機械学習検索ランキングの取り組み

                                          Search Engineering Tech Talk 2019 Autumn https://search-tech.connpass.com/event/156014/

                                            ヤフーにおける機械学習検索ランキングの取り組み
                                          • ベイズ深層学習(3.3~3.4)

                                            筑波大HCOMP研究室の勉強会資料です. 内容はベイズ深層学習(著 須山敦志)の3.3から3.4節です. 日本一(誇張)ベイズ線形回帰の計算を丁寧に書いたつもりです. 本に誤記の"可能性"があります.(自分の計算が間違っている可能性もある.) 違うとかあれば連絡ください.

                                              ベイズ深層学習(3.3~3.4)
                                            1