数学の「正しさ」について、ぎりぎり迫った一冊。 何によって数学的な「正しさ」を認識するのか、その根拠とでもいうべきもの、正しさの深層にあるものを掘り起こす。 本書の結論はこうだ。数学の正しさの「規準」は明快だが、正しさの「根拠」は極めて非自明である。そもそも「正しさ」に根拠などというものがあるのか?この疑問への明快な解には至らないにせよ、そこへのアプローチにより、数学の「正しさ」が少しも自明ではないこと、そしてその非自明性が数学を柔軟性に富んだものにしている―――この結論のみならず、そこへ至る議論の数々が、読み手に知的な揺さぶりをかけてくる。数学の正しさを疑わない人には、頭にガツンと一撃を喰わされる。 もちろん数学は「正しい」。[Wikipedia]によると、数学とは「いくつかの仮定から始めて、決められた演繹的推論を進めることで得られる事実(定理)のみからなる体系の研究」である。そこにおけ