タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

*algorithmと*programとrepに関するsh19910711のブックマーク (5)

  • Evolutionary Optimization of Model Merging Recipesを理解する(論文編)

    Evolutionary Optimization of Model Merging Recipesについて 先日、sakana.aiが発表した論文になっています。大規模言語モデル(LLM)のパラメータと下流タスクでの性能の関係は、Task Arithmeticなどで研究されてきました。そこから、複数のLLMのレイヤーをパラメータを混ぜて一つにする方法が提案されてきました。この論文では、パラメータの混ぜ方だけでなく、レイヤーのマッチングまで一化して最適化する手法を提案しています。 個人的に、この手法の発展が楽しみです。行く末は、ビッグテックが要するクローズドな大きなモデル(GPT4, Geminiなど)を、オープンソースの複数のモデルが超えていく未来が来るかもしれません(スイミーのように)。 この論文が扱う問題の理解 この論文が解く問題は、モデルの合体(model merging)の最適

    Evolutionary Optimization of Model Merging Recipesを理解する(論文編)
    sh19910711
    sh19910711 2025/10/06
    2024 / "Task Arithmetic: パラメータと下流タスクでの性能の関係 / 学習で使われたデータの違いから、モデルAのレイヤーの出力を、モデルBのレイヤーへ入力すると分布違いから、最終的な生成結果がおかしくなってしまう"
  • Poincaré Embeddings でJ1リーグのチーム・選手を可視化 - u++の備忘録

    ふと「Poincaré Embeddings」*1で遊んでみたいと思い立ち、サッカーJ1リーグのデータで試してみました。 Poincaré Embeddings gensimでの実装とデータセット Poincaré Embeddingsの学習 活用方法 おわりに Poincaré Embeddings Poincaré Embeddingsに関する説明は、ABEJA*2やscouty*3のブログに譲ります。 Poincaré Embeddings は端的に言うと word2vec の埋め込み先をユークリッド空間ではなく双曲空間にするという手法で、階層構造やべき分布をもつデータを埋め込むという問題設定において、低次元でもよい表現を与えられるという特徴があります。 Poincaré Embeddings による職種の類似度計算とその利用 - LAPRAS AI LAB gensimでの実装とデ

    Poincaré Embeddings でJ1リーグのチーム・選手を可視化 - u++の備忘録
    sh19910711
    sh19910711 2024/05/11
    "gensimの実装では正則化の影響で周囲にノードが集結しすぎないような工夫 / チーム名が中心 + 円周側に選手 / 「浦和レッズ」の近くに「サンフレッチェ広島」が配置 + 移籍した選手の影響ではないか" 2019
  • SIF/uSIFを使ってRustで簡単高速文埋め込み - たまに書く

    記事は、情報検索・検索技術 Advent Calendar 2023 9日目の記事です。 SIF/uSIFという文埋め込み手法と、そのRust実装であるsif-embeddingを紹介します。最後にちょこっとベクトル検索もします。 はじめに SIF SIF-weighting Common Component Removal アルゴリズム 使用上の注意 uSIF sif-embedding 準備 単語埋め込みの準備 ユニグラム言語モデルの準備 Let's 文埋め込み 性能評価 速度性能 評価用データセットを使ったベンチマーク 英語語 ベクトル検索 おわりに はじめに 自然言語文の密ベクトル表現を文埋め込みと呼びます。文埋め込み同士のコサイン類似度などを使って、文同士の意味的な類似度が計算できるので、自然言語処理や情報検索などで重宝します。特に最近では、今年のAdvent Calen

    SIF/uSIFを使ってRustで簡単高速文埋め込み - たまに書く
    sh19910711
    sh19910711 2024/02/23
    "SIF: 文埋め込み + ICLR 2017で発表 / CCR: 文埋め込みから文法に関係する成分を取り除く + "just", "when", "even", "one"などの構文情報に関係する単語 + このような成分を、文の意味には寄与しないノイズとして取り除く" / 2023
  • Pytorch-BigGraphによるWikipedia日本語記事のグラフ埋め込み - Sansan Tech Blog

    こんにちは、DSOC R&Dグループ研究員の 奥田 です。最近はYouTubeでコーギーの動画ばかり見ているのですが、あのパンみたいなお尻が最高です。 今回は大規模グラフに対するグラフ埋め込み(Graph Embedding)を計算するPytorch-BigGraphについて紹介いたします。また、記事の後半ではWikipediaの実データを対象に、約200万ノード1億エッジという大規模グラフに対するグラフ埋め込みの計算や類似記事検索の結果などをご報告できればと思います。 概要 グラフ埋め込み グラフ埋め込みとは、ノードとエッジから構成されたグラフ構造から、ノードの埋め込み表現を得るための手法やその表現自体のことを指します。直感的には、自然言語処理における単語埋め込み(Word Embedding)のグラフ版だと考えると理解しやすいかもしれません。 単語埋め込みにおいては、ある単語の意味は

    Pytorch-BigGraphによるWikipedia日本語記事のグラフ埋め込み - Sansan Tech Blog
    sh19910711
    sh19910711 2019/09/28
    facebookresearch/PyTorch-BigGraph
  • gensimを使ってKerasのEmbedding層を取得する - Ahogrammer

    2017/06/21にリリースされた gensim 2.2.0 から Keras との統合機能が導入されました。 具体的には、Word2vec の Keras 用ラッパが導入されました。 これにより、gensim で分散表現を学習した後に、その重みを初期値として設定した Keras の Embedding層を取得できるようになりました。 記事では、実際に gensim の Keras 統合機能を試してどのようなものなのか確認してみたいと思います。 実装 今回は、Word2vec の Keras 用ラッパーを使って、モデルを実装していきたいと思います。 具体的には 20NewsGroupsデータセットを用いて文書分類タスクに使用する例を示します。 以下の手順で実装していきます。 必要なライブラリのインストール Word2vec の学習と Embedding層の取得 モデルの構築 インストー

    gensimを使ってKerasのEmbedding層を取得する - Ahogrammer
    sh19910711
    sh19910711 2019/02/05
    “gensim で分散表現を学習した後に、その重みを初期値として設定した Keras の Embedding層を取得できる”
  • 1