修正、加筆しました

大学は、私の人生にどのような影響を及ぼしたのか、卒業してからよく考えている。世間では就業機会や生涯年収といった実利的な側面についての言及が多いが、それらはあくまで社会構造に起因するものであり、今回私が考えたいのは、人格や考え方に対する、より個人的で抽象的な側面である。 大学にいくと何が変わるのかを考えるには、変わる前、すなわち大学入学前から振り返る必要がある。自分語りが多く含まれる可能性が高いが、個人のブログなので、ある程度はお許し願いたい。自分語りが好きな方に読み進めていただけたらと思う。 小中高 埼玉県に生まれ、公立の小中学校と私立の高校に通っていた私は、とにかく丸暗記が得意で、中学に上がってからは常に学年で成績トップだった。テストの数週間前から教科書とノートを丸覚えし、得点率は90%を越えていた。教科書の本文の穴埋め問題なども、一言一句すべて覚えているため、考える必要もなかった。 学
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 今年3月頃から機械学習(主にDeepLearning)とKaggleを始め、賞金のあるコンペ「Freesound Audio Tagging 2019(以下FAT2019)」に初めて挑戦しました。やるならばと金メダルを目指していましたが、結果はPrivateLB 89位で銅メダルに落ち着きました。苦労・工夫した点や、参考にした論文、記事、カーネルなども交えてここに記録したいと思います。 ちなみに以下が最終提出カーネルです。 定数で学習モードと推論モードを切り替えていたので、少し読みづらいですが…。なお、MixMatchなど一部の実装は実
初めまして。MoTのAI技術開発部アルゴリズム第一グループの島越 [1]です。本ブログでは、私が最近ソロで10位を獲得したKaggleのコンペティション「Shopee - Price Match Guarantee」で行った取り組みについてと上位の手法について紹介したいと思います。なお、本記事で使用している画像は特に断りがない限り、上記コンペの画像を使用しております。 1. 本コンペについて まず、今回のコンペがどのようなタスクを解く問題だったのかについてご紹介します。このコンペは、東南アジア最大級のECプラットフォームであるShopeeが開催したもので、データとしてはユーザが登録した商品画像と商品のタイトルが与えられます。また、ラベルとしてはユーザが登録した商品の種別が与えられています。このラベルは、ユーザが登録したものなので、ノイズが多く載っているものになっており、同じ画像や同じタイト
特徴量が少ない代わりにデータ量はかなり多く,データセットがかなりアンバランスなことがわかります.データセットについてもっと詳しく知りたい人は以下のEDA(探索的データ分析)Kernelを見てみると良いでしょう: TalkingData EDA and Class Imbalance TalkingData EDA plus time patterns データの期間は 学習データ:2017/11/6 14:32:21 - 2017/11/9 16:00:00 テストデータ:2017/11/10 04:00:00 - 2017/11/10 15:00:00 でした. 評価 評価は識別性能の指標であるAUCが用いられました. 上位のsubmission ありがたいことに,このcompetitionでは上位のユーザー自身による手法の紹介が非常に充実しています.この記事では上位6件の手法についてまと
はじめに 先日参加したKaggleのOpenVaccine: COVID-19 mRNA Vaccine Degradation Predictionコンペティションで自分が参加していたチームではDomain Adversarial Neural Networks (DANN)と呼ばれる手法を用いていました。 結果としては、CV, Public LB, Private LBのいずれにも効いていないことが判明したのですが、Kaggleで度々話題になるAdversarial Validationとも類似した面白い技術なので、改めて紹介するとともに本当に使える手法なのかを検証していきたいと思います。 本記事は二部構成(三部構成、2020/10/25更新)になっており、前編(この記事)ではDANNの紹介と、論文中でも紹介されているMNIST/MNISTMを用いて検証を行います。後編つづく中・後編で
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く