第74回産総研人工知能セミナー「日常生活知識とAI」での講演スライドです。

※本記事は 2022年07月執筆時の情報です。 はじめに 機械学習プロジェクトでは良質な教師データが重要とされています。しかし、データ収集やアノテーション作業には手間と時間がかかります。そこでシミュレーションで生成される合成データの利用が提案されています。 Kubric は Google Research が公開している、機械学習用の合成データを生成するためのパイプラインです。3D モデルを使ってインスタンスセグメンテーション、深度画像、オプティカルフローなどのデータセットを作成することができます。物理シミュレーションには PyBullet、レンダリングには Blender が使われています。 Kubric のインストール README と Installing を参考に Kubric が動く環境を作ります。 Kubric のリポジトリをクローンします。
はじめに セマンティックセグメンテーションを行う時に普段はアノテーションを作成するのは大変な作業でしょう。もしそれが自動的に作れるのならどれくらい楽になるでしょうね。 私は「自動的に生成された画像データセットで学習して本物に適用する」ということはよくやっています。普通の分類モデルでも教師データを準備することは大変なことだから、自動生成のデータが代わりに使えたら楽ですね。 そしてその生成データはセマンティックセグメンテーションにも使えるようにすることもできます。自動的に生成したデータなので、アノテーションも当然同時に作成することができます。しかもこれは手作業より正確で完璧なアノテーションになるでしょう。 「学習データがないので自分で生成する」という話はよくあることで新しいことではないのですが、これをセマンティックセグメンテーションに使う例はあまり聞いたことないの意外でした。だから私は自分で試
TL;DR 半教師あり学習の1つの手法である、疑似ラベルをCIFAR-10で試した サンプル数が少ない場合は、疑似ラベルを使うことでテスト精度を引き上げることができた ただし、転移学習と比べると若干見劣りすることもある 元ネタ かなり平易に書かれた論文なので読みやすいと思います。 Dong-Hyun, Lee. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. 2013 http://deeplearning.net/wp-content/uploads/2013/03/pseudo_label_final.pdf 半教師あり学習とは 「教師あり学習」と「教師なし学習」の間の子。教師あり学習のように$(X, y)$とラベル付けされたデータと、教師
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く