こんにちは、Fact & Dataグループの岡﨑です。近年、ECサイトやコンテンツプラットフォームにおいて、リアルタイムでパーソナライズされたレコメンデーションの重要性が増しています。しかし、大規模なユーザー・アイテムデータを扱うレコメンドシステムでは、スケーラビリティ(大規模なデータへの対応力)を確保しながら、低レイテンシ(高速応答)を実現することが課題となっています。 従来のMatrix FactorizationやFactorization Machinesといった手法では、特徴量の柔軟な追加が難しく、新しいユーザーやアイテムが追加された場合や特徴量が変化した際にモデル全体の再学習が必要となるため、大規模サービスでの運用においてスケーラビリティの課題があります。 この課題を解決する手法として注目されているのが『Two-Tower モデル』です。この手法では、ユーザーとアイテムの特徴を
