タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

*algorithmとpythonとworkflowに関するsh19910711のブックマーク (3)

  • PyCaretとMLflowで機械学習の実験を簡単に実行・記録する - DATAFLUCT Tech Blog

    こんにちは!nakamura(@naka957)です。今回はPyCaretとMLflowを用いたAutoMLと実験記録を連携した活用方法をご紹介します。 今回は様々な機械学習アルゴリズムの比較・モデル実装に加えて、行った実験記録の管理を簡単に行う方法をご紹介します。実施事項がたくさんありますが、PyCaretとMLflowの活用で少ないコード行数で簡単に実施できます。 PyCaretは機械学習モデルの実装を簡単に行えるOSSですが、PyCaretからMLflowを呼び出すこともでき、実験記録の管理も同時に行えます。 【PyCaret】 ■ AutoMLライブラリPyCaretを使ってみた〜モデル実装から予測まで〜 ■【続き】 AutoMLライブラリPyCaretを使ってみた 〜結果の描画〜 【MLflow】 ■ MLflowの使い方 - 機械学習初心者にもできる実験記録の管理 - ■ ML

    PyCaretとMLflowで機械学習の実験を簡単に実行・記録する - DATAFLUCT Tech Blog
    sh19910711
    sh19910711 2024/04/23
    "PyCaret: AutoML + 前処理から機械学習アルゴリズムの比較・パラメーター調整・実装まで / PyCaretからMLflowを呼び出すこともでき + 実験記録の参照と再現性の確保を簡単にできる" 2022
  • データ分析コンペにおいて 特徴量管理に疲弊している全人類に伝えたい想い

    Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]

    データ分析コンペにおいて 特徴量管理に疲弊している全人類に伝えたい想い
    sh19910711
    sh19910711 2023/06/16
    "列ごとに特徴量をpickleファイルで管理する / 生成時、同時に特徴量メモを作成する / 1つのスクリプトファイルに特徴量生成をまとめる / 学習に使用した特徴量とパラメータを管理することで再現性も担保" / 2019
  • mlflowとluigiによるML実験管理例 - Qiita

    はじめに 記事ではMLの実験を行うときの、コード、パラメータ、モデル、評価結果を管理するための構成例を紹介します。 サンプルコードはこちら 前提知識 Must python docker Want mlflow luigi 思想 前処理を加えたデータや学習したモデルなどプログラムで出力されるファイルは全てmlflowの管理下におく。 コードはgitで管理し、実験結果とcommit hashを紐づける。 前処理、学習、推論などタスク同士の依存関係を管理して、依存しているタスクを自動で実行できるようにする。また、既に実行されたタスクは実行しないようにする。 構成概要 titanicのdataに対して、前処理、学習、推論を行う例を紹介する。 ディレクトリ構成は以下のような感じ。 src/tasks/下に前処理などの具体的なタスクを行うファイルを作成する。 tomlファイルで実行するタスクを指定

    mlflowとluigiによるML実験管理例 - Qiita
    sh19910711
    sh19910711 2023/03/07
    2021 / "mlflow + luigi / 前処理を加えたデータや学習したモデルなどプログラムで出力されるファイルは全てmlflowの管理下に / 実験結果とcommit hashを紐づける / mlflow.sklearn.autologを用いることで、Metricsなどがいくつか自動で保存"
  • 1