タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

tree*と*algorithmと*programに関するsh19910711のブックマーク (2)

  • ランダムフォレストをスクラッチで実装したい - Qiita

    非Deepな機械学習手法としてランダムフォレスト (Random Forest) を選択する場面は多々ありますが、基的にライブラリ任せになってあまり中身を意識することがありません。ので、今回はランダムフォレストの内部的な仕組みを確認しつつ、それを踏まえてPythonでスクラッチ実装していこうと思います。 ランダムフォレストについて ランダムフォレストの仕組みに関する分かりやすい記事は探せばいくらでもあるので、ここでは以降が読みやすくなるよう実装の視点から少し解説をつけておきます。 ランダムフォレストはたくさんの決定木から構成され、決定木はノードから構成されます。イメージとしては以下のようになります。 なので、実装の手順としては、 ノード : Node 決定木 : DecisionTree ランダムフォレスト : RandomForest の3つのクラスを実装していきます。 1. ノード

    ランダムフォレストをスクラッチで実装したい - Qiita
    sh19910711
    sh19910711 2024/05/09
    "sklearn.tree は使わない縛り / RandomForest: 入力されたデータからランダム抽出したサブセットを各決定木への入力とすることで多様な木を構築 + 抽出の際、使用する特徴量についても選択" 2020
  • C++/Rubyで基数木をつかって高速なHTTPルーティングを実現する - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? はじめに 数年にわたり、PadrinoやGrapeといったWebアプリケーションフレームワークのルーティングを改善してきた自分が、今年の11月頃から、従来とは異なるアプローチでHTTPルーティングの高速化について検証したので、その結果について解説する。 なおこの記事では、その過程でC++で基数木を実装し、それを用いることにより、Rubyで高速なHTTPルーティングを実現した事例について、順を追って解説する。 tl;dr C++で基数木(Radix Tree)を表現するr2reeというライブラリを書いた。 r2reeのRuby向けバインデ

    C++/Rubyで基数木をつかって高速なHTTPルーティングを実現する - Qiita
  • 1