東京大学松尾研究室(松尾豊特任准教授)は1月24日、東京大学の公開講座「Deep Learning基礎講座」で実際に使っている演習コンテンツの無償公開を始めた。GPUを使ってモデルを学習する実践的な内容で、個人・非商用に限って無料で利用できる。 Jupyter Notebook形式で作成された研究者向け演習コンテンツで、Jupyter環境があれば利用可能。GPUを利用し、実際にモデルを学習させながら技術を習得できる。線形代数や機械学習が前提知識として必要。コードはTensorFlowと、Numpy、Scipy、Scikit-learnなど標準的なライブラリで構成した。公開したのは演習パートのみで、講義パートのコンテンツは別。 個人で学習する目的のみで無償で利用でき、講習会や教室などでの利用は不可。クリエイティブ・コモンズの「CC-BY-NC-ND」(表示 -改変禁止- 非営利-一般)が適用
最近、Web業界やテクノロジー分野で人工知能(AI)やデータマイニング、ディープラーニングなどのキーワードとともによく耳にするようになった言葉の一つに「機械学習(マシーン・ラーニング)」という言葉があります。 機械学習はGoogleの自動運転車をはじめ、AmazonやZOZOTOWNなどのオンラインショップやNetflixやAWAなどの音楽ストリーミング配信サービスで使われるレコメンデーション機能、twitterやインスタグラムで顧客が投稿している内容を分析するマーケティングオートメーションなど、今日の社会でも頻繁に活用されています。 「機械学習」は、今後Web業界で取り残されないためにフォローするべき重要なキーワードの一つであることは間違いありません。 それでは、機械学習とは何であり、なぜこれほど注目されるのでしょうか。 今回は、「機械学習」の概要から、Web業界の関連者が知っておくべき
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く