cakesは2022年8月31日に終了いたしました。 10年間の長きにわたり、ご愛読ありがとうございました。 2022年9月1日
世の中様々な介入効果・施策効果を検証するためのexperimentが行なわれていると思うんですが、意外とその効果検証というのは難しいものです。特にいわゆる統計的因果推論の立場から見れば、web上で接触する一般ユーザーに対する介入や施策といったものの検証を完全にランダム化比較試験(Randomized Controlled Trial: RCT)として実施するのは困難です。 この問題について統計的因果推論の観点からは様々なソリューションを与えることが可能なようです。例えば傾向スコア(Propensity Score)は最近色々なところで取り上げられていますし、バックドア基準といったものも挙げられます。で、今回はその中でも差分の差分法(Difference-in-Differences: DID)を取り上げることにします。理由は単純で「どうしてもexperimentによって何かしらの介入・施策
483 化学と生物 Vol. 51, No. 7, 2013 セミナー室 研究者のためのわかりやすい統計学-3 統計検定を理解せずに使っている人のために III 池田郁男 東北大学大学院農学研究科 34 34 484 化学と生物 Vol. 51, No. 7, 2013 35 36 * 35 * 485 化学と生物 Vol. 51, No. 7, 2013 * 37 36 * 486 化学と生物 Vol. 51, No. 7, 2013 * 38 * 38 * * 37 487 化学と生物 Vol. 51, No. 7, 2013 39 * 40 * 39 40 * * 488 化学と生物 Vol. 51, No. 7, 2013 * 41 42 41 * 489 化学と生物 Vol. 51, No. 7, 2013 43 42 43 490 化学と生物 Vol. 51, No. 7, 2
408 化学と生物 Vol. 51, No. 6, 2013 15 μ σ μ σ μ σ 16 セミナー室 研究者のためのわかりやすい統計学-2 統計検定を理解せずに使っている人のために II 池田郁男 東北大学大学院農学研究科 15 16 409 化学と生物 Vol. 51, No. 6, 2013 μ σ σ σ μ σ * 17 μ σ μ σ * μ μ μ Z n 1 1 = − ( ) X µ σ σ 18 μ σ σ σ σ σ μ σ μ μ μ σ / n σ / n σ / n σ / n * * 17 18 σ 410 化学と生物 Vol. 51, No. 6, 2013 t u n 1 1 = − ( ) X µ σ σ σ σ σ μ t X 1 1 = − ( ) µ SE 19 μ μ μ μ μ 20 μ σ μ μ σ μ μ u n / 19 20 4
318 化学と生物 Vol. 51, No. 5, 2013 セミナー室 研究者のためのわかりやすい統計学-1 統計検定を理解せずに使っている人のために I 池田郁男 東北大学大学院農学研究科 319 化学と生物 Vol. 51, No. 5, 2013 1 1 320 化学と生物 Vol. 51, No. 5, 2013 2 μ σ σ 3 * 2 3 * 321 化学と生物 Vol. 51, No. 5, 2013 4 * 5 * 6 σ 4 5 6 σ * * 322 化学と生物 Vol. 51, No. 5, 2013 μ μ μ μ μ σ 7 σ σ σ σ σ σ σ σ σ σ 8 8 9 7 σ 323 化学と生物 Vol. 51, No. 5, 2013 9 10 11 * σ σ * * * * 10 11 * * * * 324 化学と生物 Vol. 51, No.
何かこんなメディア記事が出ていたようです。 これを読んで色々な人がツッコミを入れまくっている模様ですが、この記事の不思議なところは「完全に間違った説明というわけでもないのに何故か(両分野に詳しい)誰が読んでも猛烈な違和感を覚える」ところなんじゃないかなぁと。 正直、これはライター・インタビュアー・コメンテーター・編集者の誰のせいなのかは全く分からないんですが、ツッコミ入れられまくっている内容について色々あげつらってもあまり建設的でないので、ここでは記事中で本題として取り上げられている「統計学と機械学習の違い」についてちょっとコメントしてみようと思います。 あ、もちろん僕がこれから書くコメントも別に正しいとは全く限らないので、おかしいところや間違ってるところがあったらバンバン突っ込んでいただければ幸いです*1。そしてガチ勢向けのコメントでもないので何卒悪しからず。 統計学はデータを「説明」す
以前から同様の指摘は様々な分野から様々な人々が様々な形で出してきていましたが、アメリカ統計学会が以下のような明示的な声明をこの3月7日(現地時間)に発表したということで注目を集めているようです。 AMERICAN STATISTICAL ASSOCIATION RELEASES STATEMENT ON STATISTICAL SIGNIFICANCE AND P-VALUES Provides Principles to Improve the Conduct and Interpretation of Quantitative Science https://www.amstat.org/newsroom/pressreleases/P-ValueStatement.pdf The ASA's statement on p-values: context, process, and p
追記(2017年7月) こちらのスキル要件ですが、2017年版を新たに書きましたので是非そちらをご覧ください。 「データサイエンティストというかデータ分析職に就くためのスキル要件」という話題が某所であったんですが、僕にとって馴染みのあるTokyoR界隈で実際に企業のデータ分析職で活躍している人たちのスキルを眺めてみるに、 みどりぼん程度の統計学の知識 はじパタ程度の機械学習の知識 RかPythonでコードが組める SQLが書ける というのが全員の最大公約数=下限ラインかなぁと。そんなわけで、ちょろっと色々与太話を書いてみます。なお僕の周りの半径5mに限った真実かもしれませんので、皆さん自身がどこかのデータサイエンティスト()募集に応募して蹴られたとしても何の保証もいたしかねますので悪しからず。 統計学の知識は「みどりぼん以上」 データ解析のための統計モデリング入門――一般化線形モデル・階層
対応のない 2 群間の量的検定手法として、最も有名なのは Student の t 検定でしょうか。 以前、Student の t 検定についての記事を書きました。 小標本問題と t検定 - ほくそ笑む しかし、Student の t 検定は、等分散性を仮定しているため、不等分散の状況にも対応できるように、Welch の t 検定を使うのがセオリーとなっています。 ただし、これら 2つの検定は分布の正規性を仮定しているため、正規性が仮定できない状況では、Mann-Whitney の U検定というものが広く使われています。 Mann-Whitney の U検定は、正規性を仮定しないノンパラメトリック検定として有名ですが、不等分散の状況でうまく検定できないという問題があることはあまり知られていません。 今日は、これらの問題をすべて解決した、正規性も等分散性も仮定しない最強の検定、Brunner-
データサイエンティストブームが去りつつある一方で、データ分析ブームそのものはじわじわと広がり続けている感じのする昨今ですが。最近また、色々なところで「本当にビジネスやるのに統計学って必要なの?」みたいな話題を聞くことが増えてきたので、何となくざっくりまとめて書いてみました。 ちなみに今回の話題の参考図書を挙げようと思ったら、この辺ですかね。 とある弁当屋の統計技師(データサイエンティスト) ―データ分析のはじめかた― 作者: 石田基広,りんと出版社/メーカー: 共立出版発売日: 2013/09/25メディア: 単行本この商品を含むブログ (13件) を見る 統計学入門 (基礎統計学) 作者: 東京大学教養学部統計学教室出版社/メーカー: 東京大学出版会発売日: 1991/07/09メディア: 単行本購入: 158人 クリック: 3,604回この商品を含むブログ (78件) を見る 本当は赤
本記事の編集方針 ※この記事に興味をもたれた方は、 A/Bテスト カテゴリーの記事一覧 - 廿TT も、必要に応じてご覧いただければと思います。 本記事はもともとは、「A/Bテストの数理」への批判:「有意」とはなにか の続き的なエントリでした。 しかし、予想外に反響があったため Request for Comments(ご意見求む)の精神で、随時更新している部分もあります。 ただし、ベースとなる主張、Web系施策のA/Bテストに、仮説検定は向かないという部分は変化していません。 もしぼくの考えが変わり、「やっぱ仮説検定、いいかも」となった場合、本記事の存在価値はほぼ消滅します。 そのようなことがあれば、ページ最上部に「考えが変わりました」と明記します。 また、他の修正箇所も区別して明記し、差分がわかるようにします。 ただし細かい言い回しや、誤字脱字等はだまって修正します。 目次: そもそも
一般に、データ分析の大半はそれほど高度なテクニックの類を必要としないものです。僕も常日頃から口に出して言うことが多いんですが、「統計学だの機械学習だのの出番なんてそもそも少なくて当たり前」。工数もかかるし、できればやらない方が良いです。ぶっちゃけ単純な四則演算で十分なケースの方が多数派でしょう。 なので、普段はDB上でSQL(というかHiveなど)でサクッと四則演算だけで集計処理を済ませてしまって、その結果だけを表示するようにしておいた方が圧倒的に楽で手っ取り早いはず。多くのBIツールもそういう考えのもとで作られていると思います。 ところがどっこい。世の中には、単純な四則演算での集計結果と、データサイエンスを駆使した分析結果とで、食い違ってしまうケースが何故かあることが知られています。どちらかと言うとレアケースだとは思いますが、その矛盾をおざなりにするととんでもないことになることも多々あり
2013/10/19 "第30回 データマイニング+WEB @東京 ( #TokyoWebmining 30th) −機械学習活用・マーケティング 祭り−"を開催しました。 第30回 データマイニング+WEB@東京 ( #TokyoWebmining 30th) ー機械学習活用・マーケティング 祭り−: Eventbrite Google グループ 会場提供し運営を手伝って下さった ニフティ株式会社 のみなさん、どうもありがとうございました。素敵なトークを提供してくれた講師メンバーに感謝します。会場参加、USTREAM参加ともに多くの方々の参加を嬉しく思っています。 参加者ID・バックグラウンド一覧: 参加者Twitter List: Twitter List TokyoWebmining 30th 参加者セキココ:第30回 データマイニング+WEB @東京 セキココ (作成してくれた [
5ヶ月前に書いた記事がだいぶ陳腐化してきた*1気がするので、それ以降出版された書籍や、他にも学術的知識を得るだけでなく「データサイエンティストとして働く上で必要なスキル」について書かれた書籍などを加えて、「2013年秋版」の10冊をチョイスしてみました。 これはあくまでも「データサイエンティストを目指す上で必要な素地が既にある程度備わっている人」向けのスタートアップとしての10冊です。実際にはこの10冊では知識が足りなくなる場面の方が多いので、その場合は適宜発展的な書籍に当たってどんどん独習していくことをお薦めします。逆に、本当にゼロからスタートする初学者の人にはこれでもかなり辛いかもなので、今回は見なかったことにしてください、ということで。。。 そうそう、相変わらずですが僕個人はアフィリエイトやってないので、こちらのリンクから書籍を購入されても儲かるのは僕ではなくはてなです(笑)。 (※
前回の書籍リストは、基本的には「そこそこ統計学のことは知っていて」「機械学習とはどんなものかというイメージがあって」「Pythonの初歩ぐらいはできて」「本を見ながらで良ければRを使える」人たちを対象にしたものでした。 なのですが、世の中そんな最初から基礎レベルであってもきちんとスキルが揃ってる人なんてそうそう多くないわけで*1、特に今の「ビッグデータ」「データサイエンティスト」ブームを受けて勉強を始める人のほとんどが完全な初心者でしょう。 ということで、僕が実際に読んだことがあったり人から借りて読んでみたり書店で立ち読みしたりしたものの中から、そういう初心者向けのテキストを5冊に絞って紹介してみます。なお、毎回毎回しつこいですが下のリンクから書籍を購入されても、儲かるのは僕ではなくはてななのでそこのところよろしくです(笑)。 データ分析の「考え方」を身に付けるために 色々評判の良いものも
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く