タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

algorithmとstatisticsとmathに関するtakadoのブックマーク (9)

  • Rasch model - Wikipedia

    The Rasch model, named after Georg Rasch, is a psychometric model for analyzing categorical data, such as answers to questions on a reading assessment or questionnaire responses, as a function of the trade-off between the respondent's abilities, attitudes, or personality traits, and the item difficulty.[1][2] For example, they may be used to estimate a student's reading ability or the extremity of

    Rasch model - Wikipedia
  • MCMC Preprint Service

    MCMC Preprint Service Welcome to the MCMC Preprint Service This service provides a list of all registered papers on MCMC methodology currently submitted for publication. Please don't just browse, send us your papers too! Disclaimers It should be noted that the MCMC Preprint Service has no editorial policy. and that the administrators rely upon contributors to offer appropriate papers. It is enti

  • Link Analysis and Related Topics - Home

    2008年度 先端情報科学特論 II & IV リンク解析と周辺の話題 担当 新保 仁 shimbo@is.naist.jp 日時 2008/11/10, 11/17, 12/1, 12/8 (全 4 回) - 4限 15:10-16:40 場所 情報棟 L3 講義室 リンク解析は, グラフ (ネットワーク) データの構造から有用な情報を抽出するための, データマイニングの一研究分野です. この講義ではまず, リンク解析が取り扱う 2 種類の尺度 (重要度と関連度) について述べ, それぞれの代表的な計算手法を紹介します. 後半では, 近年機械学習分野で盛んに研究されているカーネルのうち, グラフ上の節点に対して定義されたカーネル (グラフカーネル) と, そのリンク解析への応用について紹介します. 第1回 11月10日 スライド 第2回 11月17日 スライド 第3回 12月1日

  • 生活や実務に役立つ高精度計算サイト

  • Sada

    Sadakane's Homepage Lecture Notes Recent Papers (other papers) J. Larsson and K. Sadakane: Faster Suffix Sorting, Theoretical Computer Science, 387(3):258--272, 2007. K. Sadakane: Compressed Suffix Trees with Full Functionality, Theory of Computing Systems, 41(4):589--607, 2007. pdf file J. Jansson, K. Sadakane and W.-K. Sung: Ultra-succinct Representation of Ordered Trees, Proc. ACM-SIAM SODA, pp

  • クラスタリング (クラスター分析) - Toshihiro Kamishima

    クラスタリング (clustering) とは,分類対象の集合を,内的結合 (internal cohesion) と外的分離 (external isolation) が達成されるような部分集合に分割すること [Everitt 93, 大橋 85] です.統計解析や多変量解析の分野ではクラスター分析 (cluster analysis) とも呼ばれ,基的なデータ解析手法としてデータマイニングでも頻繁に利用されています. 分割後の各部分集合はクラスタと呼ばれます.分割の方法にも幾つかの種類があり,全ての分類対象がちょうど一つだけのクラスタの要素となる場合(ハードなもしくは,クリスプなクラスタといいます)や,逆に一つのクラスタが複数のクラスタに同時に部分的に所属する場合(ソフト,または,ファジィなクラスタといいます)があります.ここでは前者のハードな場合のクラスタリングについて述べます.

    クラスタリング (クラスター分析) - Toshihiro Kamishima
  • 机上の空論:[メモ] サポートベクターマシン(SVM)

    サポートベクターマシン(以下 SVM) とは ・ニューラルネットワークの一種 ・教師ありクラスタリング SVM の基的な考え方 ・元々2クラスの線形分離手法として提案される ・単層パーセプトロンに似ているが、SVM はマージン最大化という手法をとっているのがポイント。 ・マージン最大化とは、超平面と学習データの隙間となるマージンをなるべく大きく取ろうというもの。 (ここでいう超平面とは、2つのクラスにぶった切る平面のこと) ・ちなみに超平面と、ちょうどマージンの分だけ離れている学習データをサポートベクトルという。 ・このマージン最大化という考えを取り入れることによって、テストデータの識別精度を高めている。 SVM の発展 ・線形分離不可能な問題への対応 - ソフトマージン(学習データが多少マージンにくい込んだり、反するクラスの空間にくい込んだりしても許す)で対応

    takado
    takado 2007/05/21
    SVMまとめ
  • 僻地 - Bayesian Setの種明かし

    Bayesian Setとは集合D_Cが与えられたとき、そこから「類推」して、元の集合C⊃D_Cに入る元xを(「自信」の度合いを表す数値つきで)求めるというもの。ただし、D_Cの元やxは特徴データ{c_i}をもっているとする。で、原論文を読むとΓ関数がずらずらでてきておどろおどろしいのだけれど、実はやっていることは簡単だということに気がついたので、書いてみる。簡単のために、特徴はあるかないかの2値的とする。(一般的には連続量も扱える。)すると、Bayesian Setのアルゴリズムがやっていることは、xについて観測された特徴c毎に重みwを足していくだけである。重みwはハイパーパラメーターα、βを使って,と書ける。ハイパーパラメータというと難しいそうだが、α_t = (Nc:D_Cでcをもつ元の数) + α、β_t = (N-Nc:D_Cでcを持たない元の数) + βと定めるので、α、βは先

  • A Plan for Spam - スパムへの対策

    スパムへの対策 ---A Plan for Spam Paul Graham, August 2002 これは、Paul Graham:A Plan for Spam を、原著者の許可を得て翻訳・公開するものです。 <版権表示> 和訳テキストの複製、変更、再配布は、この版権表示を残す限り、自由に行って結構です。 (「この版権表示」には上の文も含まれます。すなわち、再配布を禁止してはいけません)。 Copyright 2002 by Paul Graham 原文: http://www.paulgraham.com/spam.html語訳:Shiro Kawai (shiro @ acm.org) <版権表示終り> Paul Graham氏のエッセイをまとめた『ハッカーと画家』の 邦訳版が出版されました。 出版社の案内ページ Amazon.co.jp サポートページ

    takado
    takado 2006/06/21
    ベイジアンフィルタを使ったスパムフィルタの話
  • 1