タグ

関連タグで絞り込む (2)

タグの絞り込みを解除

databaseとbitvectorに関するteddy-gのブックマーク (5)

  • Wavelet Tree - naoyaのはてなダイアリー

    圧縮全文索引の実装などでしばしば利用される Rank/Select 辞書と呼ばれるデータ構造があります。詳しくは参考文献を参照していただくとして、今回は一般の文字列に対して効率的に Rank/Select を可能とするデータ構造である Wavelet Tree (ウェーブレット木) のライブラリを作りました。 http://github.com/naoya/perl-algorithm-wavelettree/tree/master my $wt = Algorithm::WaveletTree->new("abccbbabca"); is $wt->rank(6, 'a'), 2; is $wt->rank(6, 'b'), 3; is $wt->rank(9, 'b'), 4; is $wt->select(0, 'a'), 0; is $wt->select(1, 'a'), 6;

    Wavelet Tree - naoyaのはてなダイアリー
    teddy-g
    teddy-g 2014/12/15
    ウェーブレット木のPERL実装
  • 高速かつ省メモリで文字列を扱うデータ構造「wavelet tree」

    はじめに 大規模なデータを扱うアプリケーションでは、速度とともに作業領域量も大きな問題となります。作業領域がメインメモリに収まらない場合、スワッピングが発生し、大幅な速度低下につながります。そのため近年、データ構造は高速なだけでなく、作業領域量が小さいことも求められています。今回紹介するのは2003年に提案されたデータ構造、wavelet tree(以下「WT」と表記)です。WTは圧縮索引やSuccinct Data Structureなど、データをコンパクトに表現する際に重要なデータ構造です。WTは文字列T[0...n-1]が与えられた時、次の2つの操作を定数時間でサポートします。 rank(p, c)――T[0...p]中のcの出現回数を返す select(i, c)――(i+1)番目のcの位置を返す WTの作業領域量は、文字列をそのまま保存した時の約2倍程度です。 対象読者 C++

    高速かつ省メモリで文字列を扱うデータ構造「wavelet tree」
    teddy-g
    teddy-g 2014/12/15
    ウェーブレット木の実装方法
  • 簡潔データ構造 LOUDS の解説(全12回、練習問題付き)

    日本語入力を支える技術」(通称「徳永」)や「高速文字列解析の世界」(通称「岡野原」)で紹介されている LOUDS というデータ構造を、12回に分けて解説しました。 友達に教える時に使ったもので、練習問題付きです。 実際に紙に書いてやってみるとわかりやすいと思います。 詳解 LOUDS (1) LOUDS とは 詳解 LOUDS (2) ビット列を作ってみる 詳解 LOUDS (3) 0番ノード 詳解 LOUDS (4) ビットの意味 詳解 LOUDS (5) 木構造の復元 詳解 LOUDS (6) インデックスでノードを表す 詳解 LOUDS (7) ノード番号からインデックスを得る 詳解 LOUDS (8) インデックスからノード番号を得る 詳解 LOUDS (9) 子ノードから親ノード 詳解 LOUDS (10) 親ノードから子ノード 詳解 LOUDS (11) 木の検索 詳解

    簡潔データ構造 LOUDS の解説(全12回、練習問題付き)
    teddy-g
    teddy-g 2014/12/15
    SuccinctなData構造のLOUDS解説。とてもわかりやすい。
  • 中学生にもわかるウェーブレット行列 - アスペ日記

    id:echizen_tm さんの記事「ウェーブレット木の効率的で簡単な実装 "The Wavelet Matrix"」から始まったウェーブレット行列ブームから半年以上が過ぎ、すでに枯れた技術として確立されつつある感があります。 …嘘です。 日以外ではあんまり来ていません。 理由としては、やはりアルファベット圏では単語境界が明確であるため、こちらの記事で書かれているような「キーワード分割の難易度」といったことがあまり問題にならないということがあるかもしれません。 まあ、そういうわけで局所的に来ているウェーブレット行列ですが、日語をはじめとする単語境界のない言語圏にとっては重要なネタであると思うため、解説記事を書き直して*1みようと思います。 ウェーブレット行列でできること 主となる操作は、文字列に対する 定数時間の rank() と select()*2 です。 rank() は、「文

    teddy-g
    teddy-g 2014/12/15
    ウェーブレット行列について。ちゃんと読んでみないといけない。
  • 完備辞書(簡潔ビットベクトル)の解説 - アスペ日記

    以前、「簡潔データ構造 LOUDS の解説」というシリーズの記事を書いたことがあります。 LOUDS というのは木構造やtrieを簡潔に表すことができるデータ構造なのですが、この中で「簡潔ビットベクトル」というものについてはブラックボックスとして扱っていました。 また、中学生にもわかるウェーブレット行列を書いたときも、その中で出てきた「完備辞書」の実装には触れませんでした。 この「簡潔ビットベクトル」「完備辞書」は、同じものを指しています*1。 今回は、このデータ構造*2について書いてみます。 完備辞書でできること ビット列に対する定数時間の rank と selectです*3。 rank()は、「ビット列の先頭から位置 k までに、1 のビットがいくつあるか」*4。 select()は、「ビット列の先頭から見て、n 個目の 1 のビットの次の位置はどこか」*5。 それぞれ例を挙げます。

    完備辞書(簡潔ビットベクトル)の解説 - アスペ日記
    teddy-g
    teddy-g 2014/12/15
    Succinct Bit Vectorの説明。ちゃんとひとつひとつ確認しながら読みたいと思う。
  • 1