A course I taught in 2015 at Oxford University with the help of Brendan Shillingford. More information here: http://www.cs.ox.ac.uk/teaching/courses/2014-201...
概要 深層学習フレームワークCaffeを使って,Deep Q-Networkという深層強化学習アルゴリズムをC++で実装して,Atari 2600のゲームをプレイさせてみました. Deep Q-Network Deep Q-Network(以下DQN)は,2013年のNIPSのDeep Learning Workshopの"Playing Atari with Deep Reinforcement Learning"という論文で提案されたアルゴリズムで,行動価値関数Q(s,a)を深層ニューラルネットワークにより近似するという,近年の深層学習の研究成果を強化学習に活かしたものです.Atari 2600のゲームに適用され,既存手法を圧倒するとともに一部のゲームでは人間のエキスパートを上回るスコアを達成しています.論文の著者らは今年Googleに買収されたDeepMindの研究者です. NIPS
We present the first deep learning model to successfully learn control policies directly from high-dimensional sensory input using reinforcement learning. The model is a convolutional neural network, trained with a variant of Q-learning, whose input is raw pixels and whose output is a value function estimating future rewards. We apply our method to seven Atari 2600 games from the Arcade Learning E
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く