タグ

machinelearningとCNNに関するtnalのブックマーク (2)

  • 自然言語処理における畳み込みニューラルネットワークを理解する · けんごのお屋敷

    最近、畳み込みニューラルネットワークを使ったテキスト分類の実験をしていて、知見が溜まってきたのでそれについて何か記事を書こうと思っていた時に、こんな記事をみつけました。 http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp 畳み込みニューラルネットワークを自然言語処理に適用する話なのですが、この記事、個人的にわかりやすいなと思ったので、著者に許可をもらって日語に翻訳しました。なお、この記事を読むにあたっては、ニューラルネットワークに関する基礎知識程度は必要かと思われます。 ※日語としてよりわかりやすく自然になるように、原文を直訳していない箇所もいくつかありますのでご了承ください。翻訳の致命的なミスなどありましたら、Twitterなどで指摘いただければすみやかに修正します。 以下

    自然言語処理における畳み込みニューラルネットワークを理解する · けんごのお屋敷
  • Chainerによる畳み込みニューラルネットワークの実装 - 人工知能に関する断創録

    Chainerによる多層パーセプトロンの実装(2015/10/5)のつづき。今回はChainerで畳み込みニューラルネットワーク(CNN:Convolutional Neural Network)を実装した。Theanoによる畳み込みニューラルネットワークの実装 (1)(2015/6/26)で書いたのと同じ構造をChainerで試しただけ。タスクは前回と同じくMNIST。 今回は、MNISTデータの取得や訓練/テストの分割にscikit-learnの関数を使ってみた。 Chainerで畳み込みをするためには、訓練データの画像セットを(ミニバッチサイズ、チャンネル数、高さ、幅)の4次元テンソルに変換する必要がある(ここに書いてある)。今回はチャンネル数が1なので単純にreshapeで変形できる。 3チャンネルのカラー画像だとnumpyのtranspose()で4次元テンソルに変換できるみたい

    Chainerによる畳み込みニューラルネットワークの実装 - 人工知能に関する断創録
  • 1