キャリア、転職、人材育成のヒントを提供してきた「リスキリング」チャンネルは新生「NIKKEIリスキリング」としてスタート。 ビジネスパーソンのためのファッション情報を集めた「Men’s Fashion」チャンネルは「THE NIKKEI MAGAZINE」デジタル版に進化しました。 その他のチャンネルはお休みし、公開コンテンツのほとんどは「日経電子版」ならびに課題解決型サイト「日経BizGate」で引き続きご覧いただけます。
はじめに 新年度になって、何か新しいことを学ぼうという気になったという人は少なくないだろう。そうした人の中には、これから数学を学ぼうと思った人もいるかもしれない。それだけでなく、高校や大学に進学したことで、今までとは違った感じの数学を学ぶ必要が出てくる人もいるだろう。 この記事では、そういった人のために、数学の学び方や考え方に触れられる文献を紹介していきたいと思う。 大学での数学の勉強 大学での数学の勉強は、高校までの数学の勉強とは違うところがある。このため、高校の時のやり方でうまくいくとは限らない。このため、大学での数学の勉強にあった学び方を身につける必要があるだろう。 日本評論社が出している『数学セミナー』の増刊号に『数学ガイダンス2016』というものがある。この本は、大学の新入生に向けて書かれた、大学での数学の学び方について記したムックである。大学の数学の世界がどんなものであるかがう
出現確率1%のガチャを100回引いても,4割近くの人は全部はずれる。“本当の確率”を読み解いてみよう ライター:宮里圭介 まったく確率表示をしていなかったり,レア度別の確率のみ表示したりと,タイトルによって対応はさまざまだ スマートフォン向けゲームに欠かせない存在となっている「ガチャ」。お目当てのキャラやアイテムを引き当てたときの嬉しさは格別だし,結構な額のリアルマネーを使ったあげく,ハズレばかりだったときの悔しさもまたかなりのものだ。 すべては運にかかっているので,プレイヤーが頼りにできるデータといえば,公開されている出現確率ぐらいだろう。以前はその確率が公開されていないゲームが多かったが,最近は業界として確率表示を進める動きが強まっており,人気タイトルの「グランブルーファンタジー」でも,本日(2016年3月10日)から装備品個別の出現確率が表記されるようになる。 だが,確率が明らかにな
2015-07-31 東大生が選ぶ好きな数式ベスト7 東大 数学や物理って難しいですよね.教科書を初めから理解していこうとすると骨が折れて投げ出しそうになることも多いです.でも,理解できた時の喜びもひとしおです. そこで,現役東大生の私が,学部初等で学ぶ数式の中からお気に入りのものを選んでみました. 難しいものもありますが,みなさんが物理や数学に興味を持ってくれれば幸いです! 1.ナビエ・ストークス方程式 (これは非圧縮性流体の場合)ナビエ・ストークス方程式は流体の運動方程式であり,航空機の翼周りの流れや生体内の血流の流れなど,多くの現象を決定づける式です.多くの大学生が学部時代に学ぶ基本的な式なのですが,いまだその解析的な解法は知られておらず,流体の解析には数値的な手法が用いられています.ちなみに,この数式は解くと1億円もらえる「ミレニアム問題」の一つにもなっています (ナビエ-ストーク
50円で東大生が売ってたので買ってきました。 www.ryosuke-takano.net これは!! 東大生だから東京在住だよね?こんな遠い地方まで(中国地方)本当に交通費自己負担で学生さんが来てくれるんだろうか?(いやいや東大生だからもしかしてお金持ちのご子息かもしれない)ダメ元でとりあえずチャレンジ!ツイッターで問い合わせをしてみました。 依頼した内容は「小学2年の息子と数学を語ってほしい」 なんと即答で引き受けてくださいました。たぶんね、遠いし相手は子供だし最初は(ゲッ!)って思われたと思うんですよ。ブログの記事をいくつか拝見しましたがお若い方のノリで私とは全く接点はなさげですし。でも国内ならどこでも行くと書かれた以上断るわけにもいかないでしょうし引き受けてくださったんだと思います。 ダイレクトメールで日時の打ち合わせ、うちの息子が自閉症スペクトラムであることを含めどんな子であるか
こんにちは。林岳彦です。先日、小学生の息子とセブンイレブンに行きました。そこでふと、「あの外壁、あれ本物のレンガじゃなくてただの印刷だから」と息子に教えたところ、それが彼にとっては思いもよらぬことだったようで、実はすべすべとしている外壁に触っては「すっかり騙されてた!(ガーン)」と衝撃を受けていました。小さな子どもをお持ちのみなさま、この世の隠蔽された真実(=セブンイレブンの外壁は印刷)を彼ら/彼女らに教えてみると面白い反応が期待できるかもですよ! さて。 今回は、前回の記事の続きとして、確率という概念の「規格」について説明していきたいと思います。 (今回はとても長い上に内容がハードかもしれません。いつもながらすみません。。) 前回の軽いまとめ 前回の記事では: 少なくとも、「確率」とは「可能性を数値で表したもの」である というボンヤリとした出発点から: 「可能である」ということは、「この
ある集団についてのデータがどのように分布しているかを表すものとして、その集団の代表値★(中心の値)を示す平均値及びそのばらつき具合を示す散布度がある。平均には算術平均が、散布度には標準偏差がよく用いられている。 1.度数分布表・ヒストグラム データがどのように分布しているかその実態を把握するには、データをその大きさによりいくつかの階級に区分し、その階級ごとの個数 (度数) をカウントして表にした度数分布表、あるいは、それを棒グラフにして表わしたヒストグラムが適している (表1、図1) 。 例えば、年齢別人口や従業者規模別事業所数など多くの統計表は度数分布表の形で作成され、また、年齢別人口をヒストグラムにした人口ピラミッドは人口構造の分析等によく用いられている。 2.平均値★ 一般に平均値には、単純平均 が多く使われている。平均値は通常μ(ミュー) と表示される。 3.標準偏差
twitter をみていたら、こんなツイートが回ってきました。 モバゲー・GREEが確率明示しないのは、搾り取るためというよりは、クレーム対応減らすため。1%でSR、って書くと「100回引いたのに出ない。詐欺だ」。確率だから、って説明すると彼らはこう返す「だから、100回に1回出るんでしょ?」…さあ、どう返そうか。 — saintear/セインティアさん (@saintearRX) 5月 6, 2012 たしかに「1% のガチャを 100 回引いたら当たる」と思い込んでしまう人は多そうです。 では、1% のガチャを 100 回引くと、どれぐらいの人が当たり、どれぐらいの人が当たらないのでしょうか。 1% のガチャを 100 回引いて当たらない確率は? さっそく計算してみましょう。 1 回ガチャを引いて当たらない確率は です。当たる確率は = 1% です。 2 回ガチャを引いたときに、1 度
2016 - 03 - 04 数学への分野転向の際に行った勉強のこと 仕事術 最近周辺で、受験生時代の勉強方法についてまとめている人がちらほら見えて どれもとても勉強になったので、私も釣られて書いてみようと思いました。 しかしながら生憎、他の皆さんの記事が素晴らしいので、 プラスαのバリューを出せそうなことは殆どなさそうだなと思いました。 何か他と違った視点で書けないかなーと思って思いついたのが 薬学から数学への転向の話です。 特に今夜は久しぶりに純粋数学の問題を自分で設定して解こうとしてもがいて、 転向した時の初心を思い出したので、 初心を更に思い出すために記録したいと思います。 まず簡単なまとめから。 仕事において、新しい分野の勉強をする際には 難しすぎる教科書には手を出さない(適切なレベルから始める) その道のエキスパートに基礎として何を学ぶべきか教えを請う どのようにして仕事に活か
2013年 プログラマの為の数学勉強会 資料 第1回:イントロダクション 第2回:浮動小数点数・極限・微分 第3回:微分法の応用・多変数関数の微分法 第4回:微分法の応用(続き)・方程式の数値解法 第5回:微分方程式の数値解法・積分法 第6回:数値積分法・積分法の応用 第7回:行列・ベクトル・ガウス消去法 第8回:行列式・逆行列・連立一次方程式の直接解法 第9回:線型空間・線型写像・固有値固有ベクトル(その1) 第10回:線型変換・固有値固有ベクトル(その2)・内積空間 第11回:連立一次方程式の反復解法・二次形式・多変数関数の極値・重積分 第12回:確率論入門 第13回:情報量・エントロピー・重要な確率分布・大数の法則・中心極限定理 第14回:擬似乱数の生成法・推定 第15回:検定 第16回:検定の続き, 回帰分析 第17回:回帰分析の続き 第18回:ベイズ統計
/* fft.c */ #include <stdio.h> #include <stdlib.h> #include "sslib.h" void fft1(double ar[], double ai[], int n, int iter, int flag) { int i, it, j, j1, j2, k, xp, xp2; double arg, dr1, dr2, di1, di2, tr, ti, w, wr, wi; if(n < 2) { fprintf(stderr, "Error : n < 2 in fft1()\n"); return; } if(iter <= 0) { iter = 0; i = n; while((i /= 2) != 0) iter++; } j = 1; for(i = 0; i < iter; i++) j *= 2; if(n !=
群論入門 † 群の公理(Joh著) 群について基本的なこと(Joh著) 対称群(Joh著) 置換の計算 (Joh著) 運動群 (Joh著) 有限回転群(Joh著) 有限巡回群(Joh著) 無限巡回群(Joh著) 組みひも群 (Joh・丹下著) クラインの四元群(Joh著) 対称式・交代式と群(Joh著) 正六面体群(Joh著) 正多面体群1(Joh著) 正多面体群2(Joh著) 部分群(Joh著) 集合の元同士を足す・掛ける(Joh著) 類別(Joh著) 整数の加法群の剰余類(Joh著) 剰余類(Joh著) 剰余類2(Joh著) 完全代表系と商集合(Joh著) 整数の剰余類のつくる加群(Joh著) 整数の剰余類の作る乗群(Joh著) ラグランジェの定理(Joh著) 群の位数と元の位数(Joh著) 正多面体群3(Joh著) フェルマーの小定理(Joh著) シローの定理(Joh著) 群が集合の
■行列の積 ABの定義 [行ベクトルと列ベクトルの内積] ●行と列の掛け方 内積については,左からは行ベクトルを 右からは列ベクトルを掛けるものとします。 (左右を逆にしたものは定義されません。) ●要素数 行ベクトルの要素の個数(列数)と 列ベクトルの要素の個数(行数)が 等しいときに,行と列の内積が定義されます。
§3 個数の処理 1.集合の表現方法 りんご,みかん,バナナ・・・というような「もの」の集まりを「果物」と呼びます。このように,含まれる「もの」が明確な「もの」の集まりを 集合 といいます。そして,その集合に含まれる一つ一つの「もの」を,その集合の 要素 と呼びます。 ● 属する a が集合 A の要素であるとき, a は集合 A に属するといい と表し,b が集合 A の要素でないとき, b は集合 A に属さないといい と表します。「∈」を「属する」と呼びます。利用するときは,向きに注意し,開いている方が集合で,閉じている方が要素であることに注意しましょう。 ● 集合の表記方法 たとえば,1から10までの自然数のうち,奇数全体の集合を A とすると,1,3,5,7,9 を要素とする集合となります。このことを記号で表現する時,次の2つの方法があります。 Ⅰ.具体的に要素を書く方法 中括弧
この記事はMath Advent Calendar 2015 2日目の記事です。 前回の記事は515hikaruさんのMath Advent Calendar 2015 一日目 - 515 ひかるのブログ 日常編です。 とあることから、30歳にして数学を学び始めました。いまは毎日楽しく数学の書籍を読んだり方程式を解いたりしています。 本記事では、僕と同じようにもう一度数学を学びたいなと思っている人向けに、数学の魅力を再発見する方法を紹介します。 30歳にして数学を学び始めたきっかけ きっかけはプログラマのための数学勉強会です。 とあるご縁でこの勉強会で発表することになり、そこから数学を学び直しました。 内容については、以下の記事を参照ください。 プログラマのための数学勉強会@福岡に登壇してきました プログラマのための数学勉強会@福岡#2に登壇してきました この数学勉強会で数学を勉強すること
三角関数の初歩 目次 1. sinとcos 1.1 sinとcosの概念 1.2 ここまでの知識の確認 1.3 sinθとcosθの公式 これが分かっていればOK 2. tanの概念 電波の伝搬距離(電離層で反射する場合)の公式に出てきます 3. 三平方の定理と三角関数 線路主任技術者を受ける方は見てください 4. 練習問題 この問題が解ければ、ここを読む必要はないです。 sinとcos sinとcosの概念 結論から言います。以下の図をご覧下さい。 斜辺が1である右下に直角があって左下の角の角度がθ(シータと読みます)の三角形の下の辺の長さをcosθ、右の辺の長さをsinθと定義します。これはθが左下にあった場合です、じゃあ右上にθがあった場合はどうなるかと言うと、 となります。ややこしいので、上の図で覚えた方がいいでしょう。 具体的な値の求め方に行きます。 θが30度の時、sinθとc
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く