タグ

RNNに関するu_wot_m8のブックマーク (2)

  • [TensorFlow/Keras] 好きな構造のRNNを組み立てるまでの道のり - Qiita

    はじめに 時系列データを入力にとり、今の時刻の入力に加えて前の時刻の「状態」も使って出力を決めるニューラルネットワークの形態に RNN (Recurrent Neural Network) があります。LSTM(Long Short-Term Memory, 長・短期記憶)が有名でしょうか。 時系列データとは、動画やテキストといった、列全体として意味を持つようなデータです。普通のニューラルネットワークは画像や文字といった、形式の決まったある1つのデータを入力に取るわけですが、それらが並んだ動画やテキストを扱うときには、個々の画像(フレーム)や文字はもちろん、その並びにも大きな意味がありますね。このようなデータをうまく扱う構造がRNNというわけです。 ただ普通の全結合層などと違って正直とっつきにくいと思います。私もそうです。 というわけで、まずはRNNが何をするものかを理解して、次に前の時刻

    [TensorFlow/Keras] 好きな構造のRNNを組み立てるまでの道のり - Qiita
  • 再帰型ニューラルネットワークの「基礎の基礎」を理解する ~ディープラーニング入門|第3回 - アイマガジン|i Magazine|IS magazine

    前回は、ディープラーニングの中でも、とくに画像認識で利用される畳み込みネットワークを取り上げた。画像認識はディープラーニングの応用分野として、最も研究が盛んで、適用事例も多いエリアである。しかし、そのほかの分野でもさまざまな形での応用が進められており、そこでは畳み込みネットワーク以外の手法が利用されることも多い。 今回は、それらの中から「再帰型ニューラルネットワーク」と呼ばれる手法を取り上げて解説する。 ある時刻の値は、以前の 時刻の変化の延長上にある 再帰型ニューラルネットワーク(Recurrent Neural Network:以下、RNN)は、ニューラルネットワークを拡張して時系列データを扱えるようにしたものである。ここで言う時系列データとは、ある時間の経過とともに値が変化していくようなデータを指し、店舗の日次売上データやホームページのアクセス数履歴、工場設備のセンサデータなど、多種

    再帰型ニューラルネットワークの「基礎の基礎」を理解する ~ディープラーニング入門|第3回 - アイマガジン|i Magazine|IS magazine
    u_wot_m8
    u_wot_m8 2019/12/20
  • 1