タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

programmingとalgorithmとwikipediaに関するwhaleboneのブックマーク (3)

  • 曲線あてはめ - Wikipedia

    曲線あてはめ(きょくせんあてはめ)またはカーブフィッティング(英: curve fitting)[1][2][3][4]は、実験的に得られたデータまたは制約条件に最もよく当てはまるような曲線を求めること。最良あてはめ、曲線回帰とも。一般に内挿や回帰分析を用いる。場合によっては外挿も用いる。回帰分析で曲線を求める場合、その曲線はデータ点を必ず通るわけではなく、曲線とデータ点群の距離が最小になるようにする。曲線あてはめによって得られた曲線を、近似曲線という。特に回帰分析を用いた場合には回帰曲線という。現実の実験データは直線的ではないことが多いため散布図、近似曲線を求める必要性は高い。 我々が考えるべき問題は、実験データを実験を説明する「説明変数」と「目的変数」に分類した上で、説明変数 と、目的変数yの関係 を求めることである。説明変数としては測定条件を考えることが多く、目的変数としては、測定値

    曲線あてはめ - Wikipedia
  • 探索 - Wikipedia

    探索(たんさく、英: search)とは、特定の制約条件を満たす物を見つけ出す行動のこと。 何か問題を解くに当たって、有効な解析的な解法を用いることのできない場合は、試行錯誤によって解を得る場合もある。 一部のアルゴリズムは、元々、機械学習と並んで人工知能の分野のアルゴリズムであるが、現在はその他の分野にも応用されている。類義語として検索(英: search)も参照。 探索アルゴリズムとは、大まかに言えば、問題を入力として、考えられるいくつもの解を評価した後、解を返すアルゴリズムである。 まず解くべき問題を状態(英: state)と状態変化(行動、英: action)に分ける。 最初に与えられる状態を初期状態(英: initial state)といい、目的とする状態は最終状態(ゴール、英: final state, goal)と呼ばれる。 初期状態から最終状態に至る、状態及び状態変化の並び

  • 端数処理 - Wikipedia

    丸めは任意の丸め幅に対し可能だが、以下では特に断らない限り、丸め幅を1とする(後段の「#例」では、丸め幅は0.1である)。任意の丸め幅で丸めるには、丸める前に丸め幅で割り、丸めた後に丸め幅をかける。 主に正数について述べるが、負数についても適宜述べる。 整数部分をそのまま残し、小数点以下を0とする丸めを「切り捨て」という。それに対し、小数点以下が0でなかった場合整数部分を1増やし、小数点以下を0とする丸めを「切り上げ」という。 負の数を考えると、「切り捨て」「切り上げ」に準ずる丸めは、4種類ある。それぞれ「○○への丸め」と呼ばれる。 符号を無視して絶対値を丸める場合、「切り捨て」は常に0へ近づく(または変わらない。以下では省略)ので「0への丸め (rounding toward zero; RZ)」、「切り上げ」は常に数直線上の無限遠点へ近づくので「無限大への丸め (rounding to

    端数処理 - Wikipedia
  • 1