ZOZO研究所でインターンをしている松井です。本記事では、cross-domain画像検索とdeep metric learningの概要と、cross-domain画像検索で良い精度を達成するためのテクニックを取り上げます。 metric learningの概要 metric learningとは、データ間の関係を表す計量(距離や類似度など)を学習する手法です。 画像分類や、画像検索などに応用できます。 意味の近いデータの特徴量どうしは近く、意味の異なるデータの特徴量どうしは遠くなるような計量を学習 します。 意味の近いデータのペアを positive pair 、意味の異なるデータのペアを negative pair と呼びます。 deep learningが出てくる前の代表的な手法として、マハラノビス距離の共分散行列を学習させる手法があります。 :データの特徴量 :パラメータ(共分散