はじめまして。9月初旬より約半月にわたり、AIエンジニアコースのインターンに参加させていただいた清水と申します。大学院は情報系の専攻で、最近は幾何学的な深層学習に関する研究に取り組んでいます。その過程で言語的なタスクを出口に用いることも多く、副次的に深層学習を利用した自然言語処理にも多少明るかったりします。 題目にあるTransformerとは、そうした分野にてここ数年にわかに注目を集めている仕組みの名です。自然言語処理の最先端研究ではまず流用されないことなどない、いわば伝家の宝刀レベルのモデルといってよいでしょう。 本記事ではこれを『逆転オセロニア』というゲームのデッキ編成に特化させ、現行手法よりも表現力に富んだ編成システムを実現した経緯についてお話しできればと思います。『日進月歩で強力になっていく機械学習手法の恩恵に与りたいけれど、所望の問題設定にドンピシャな手法なんてそうそうなくて思