はじめまして。R&Dチーム所属、20.5卒の伊藤です。 普段の業務では自然言語処理と格闘していることが多いです。 今回は自然言語処理モデルとして有名なBERTをWebAssemblyを使用してフロントエンドで動かしてみた話になります。 最近、自然言語処理ライブラリとして普段お世話になっているHugging Face社のTransformersのTokenizerがRustで実装されていることを知り、それならばWebAssemblyにコンパイルして動かせるのではないかと試したみたのがきっかけです。 Tokenizerのみ動かしても実用性に乏しいため、Tokenizerから得られた結果からBERTを用いた推論をブラウザで動作させるまでを行い、備忘録がでら手順をまとめました。 どなたかの参考になれば幸いです。 8/26追記 本記事内のコードを含むリポジトリを公開しました!Dockerを使用してブ
なんでもkaggle関連リンク、充実している。すごい。 なんでもkaggle関連リンク - Kaggler-ja Wiki https://t.co/6hiClF7MgZ
2021-08-13 内容システム提供において、基本的に高速であればあるほど顧客は嬉しいものだが、実際のところ高速なシステムを提供して、どの程度の価値が発生するのかが気になったので、調べてみた。 2021/08/14 追記A/Bテスト実践ガイド 真のデータドリブンへ至る信用できる実験とは の書籍で同様な事例が紹介されているとのこと。情報提供ありがとうございます。実務でA/Bテストに向き合った人間であれば必ず一度は考えたことのあるトピックについて、アメリカのテックカンパニー(Airbnb, Google, LinkedInなど)勤務の著者らが国際会議で発表された研究もちゃんと引用して見解を述べており説得力がある。 従って、現時点における最高レベルの意思決定をデータ(A/Bテスト)に基づいて行いたいと思うなら、一度は目を通しておくべきであり関係者必携だと思う。 ※個人的には”Webサービスのレ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く