タグ

ブックマーク / tjo.hatenablog.com (3)

  • エンジニア・データ分析職の方々にお薦めしたい、LLM時代に不可欠な教養が身に付くテキスト3選 - 渋谷駅前で働くデータサイエンティストのブログ

    (『IT Text 自然語処理の基礎』より) 3ヶ月ほど前に空前のLLMブームについて概観する記事を書きましたが、それ以降も世間のLLMに対する狂騒ぶりは収まるどころかますます拍車がかかるという有様で、あまつさえ僕自身の仕事における日常業務にもじわじわと影響が及びつつあり、今後も良きにつけ悪しきにつけLLMと共生し続ける必要がありそうだと感じている今日この頃です。 そんなも杓子もLLMに群がるが如き空前のブームを受けて、エンジニアデータ分析職の方々の中には「LLMに興味はあるんだけど世の中にあまりにも多くのLLM関連コンテンツが溢れ返っていて何から手をつけたら良いのか分からない」という向きもあるように見受けられます。そこで、僕も断じてLLM以下生成AIの専門家などではないのですが、個人的に「このテキストを読めばLLM時代を生き抜くことが出来そうだ」と感じた書籍を、全くの独断と偏見で3冊

    エンジニア・データ分析職の方々にお薦めしたい、LLM時代に不可欠な教養が身に付くテキスト3選 - 渋谷駅前で働くデータサイエンティストのブログ
  • ディープラーニング(Deep Learning)の歴史を振り返る - 渋谷駅前で働くデータサイエンティストのブログ

    先日Quora日語版でこんな回答を書いたのですが、ついでなので少し文脈情報を付け足してブログの方に再録することにしました。理由は単純で、このブログでディープラーニングの歴史についてまとめた記事を今まで書いてきたことがなく、そしてブログ記事にした方がより認識違いや調査不足などについての指摘をもらいやすいと思われたからです。ということで、以下の説明に関してツッコミがあれば是非コメント欄などにお寄せくださいm(_ _)m (A Neural Network Playground) ディープラーニングを語る上で、その前史であるパーセプトロン、そして(人工)ニューラルネットワークの話題は欠かせません。以下大まかに説明していきましょう。(※歴史解説中では敬称略、各種用語は原則カナ表記*1) パーセプトロンの登場 ミンスキーによる批判と第1の冬の時代 誤差逆伝播学習則と中間層を用いたニューラルネットワ

    ディープラーニング(Deep Learning)の歴史を振り返る - 渋谷駅前で働くデータサイエンティストのブログ
    zex5yo
    zex5yo 2020/08/17
  • 改めて、汎化性能と交差検証のはなし - 渋谷駅前で働くデータサイエンティストのブログ

    追記 再現性をチェックする実験を後日実施しています。併せてお読みください。 以前こんな記事を書きました。 この辺の話はとっくの昔に常識になっていると思っていたのですが、昨今様々な「モデル」が提唱されて公の場で喧伝されることが増えてきており、その中には明らかにこれらの記事で指摘されている問題に引っかかっているものがあるようなので、注意喚起も兼ねて改めてブログ記事として書いてみようと思います。 追記 (May 08, 2020) 文中にも記事公開当初の初稿の時点でいくつか但し書きを入れてありますが、この記事で最も強調したかったことは「時系列データに対して多項式フィッティングを行うという来あり得ないモデリングのやり方であっても、交差検証を行えば短期的な予測性能(汎化性能)を改善することができる」ということです。データセットにランダムウォークを選択したのは、単に極値が2つ以上ある時系列を生成し

    改めて、汎化性能と交差検証のはなし - 渋谷駅前で働くデータサイエンティストのブログ
    zex5yo
    zex5yo 2020/04/12
  • 1