タグ

関連タグで絞り込む (237)

タグの絞り込みを解除

MATHに関するHKRWのブックマーク (53)

  • W3C Math Home

    What is MathML teaches you how to create your first equation and to understand the base constructs of MathML. For a quick intro, try Mozilla's tutorial, Daniel Scully's Beginner's Guide, or the Connexions Guide to MathML. For a thorough resource on all tags and attributes, dive into the excellent documentation at Mozilla and you can also simply check out some pretty examples of MathML. All major b

  • 数学ナビゲーター

    Web電卓: ルート,三角関数,対数の計算だけでなく複雑な計算もできます。 google電卓もいいかも。⇒このサイトに詳しく書かれています。

  • 幾何学 - Wikipedia

    18世紀の百科事典の幾何学図形の表。 最先端の物理学でも用いられるカラビ-ヤウ多様体の一種。現代幾何学では図も描けないような抽象的な分野も存在する。 20世紀における初等幾何学の授業風景。 幾何学(きかがく、古代ギリシア語: γεωμετρία)は、図形や空間の性質について研究する数学の分野である[1][2]。 もともと測量の必要上からエジプトで生まれたものだが、人間に認識できる図形に関する様々な性質を研究する数学の分野としてとくに古代ギリシアにて独自に発達し[3]、これらのおもな成果は紀元前300年ごろエウクレイデスによって『ユークリッド原論』にまとめられた[2]。その後中世以降のヨーロッパでユークリッド幾何学を発端とする様々な幾何学が登場した[3]。 単に幾何学と言うと、ユークリッド幾何学のような具体的な平面や空間の図形を扱う幾何学をさすことが多く、一般にも馴染みが深いが[3]、対象や

    幾何学 - Wikipedia
  • 必要条件,十分条件

    《解説》 ■ 数学で用いられる「必要条件」「十分条件」という用語は,日常生活で用いられる”必要","十分"とは異なるものです. 数学上の必要条件,十分条件は,pならばq(記号では,p→q)という関係が成り立つかどうかで決まります.

  • ハッシュ関数 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "ハッシュ関数" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2018年6月) ハッシュ関数で名前と0から15までの整数をマッピングしている。"John Smith" と "Sandra Dee" のハッシュ値が衝突している。 ハッシュ関数 (ハッシュかんすう、英語: hash function) あるいは要約関数[1]とは、任意のデータから、別の(多くの場合は短い固定長の)値を得るための操作、または、その様な値を得るための関数のこと。ハッシュ関数から得られた値のことを要約値やハッシュ値または単にハッシュという。 ハッシュ関数は、主に

    ハッシュ関数 - Wikipedia
  • リーマンゼータ関数 - Wikipedia

    複素数平面上のリーマンゼータ関数。点 s における色が ζ (s) の値を表しており、濃いほど 0 に近い。色調はその値の偏角を表しており、例えば正の実数は赤である。s = 1 における白い点は極であり、実軸の負の部分および臨界線 Re s = 1/2 上の黒い点は零点である。 19世紀を代表する数学者、ベルンハルト・リーマン。 数学におけるリーマンゼータ関数(リーマンゼータかんすう、英: Riemann zeta function、独: Riemannsche zeta funktion、中: 黎曼泽塔函数)は、18世紀にバーゼル問題を解決したレオンハルト・オイラーによる(現在リーマンゼータ関数と呼ばれる)関数の特殊値に関する重要な発見から始まり、後世により重要な貢献をしたベルンハルト・リーマンが用いた ζ による表記にちなみ、リーマンゼータ関数またはリーマンのゼータ関数とも呼ばれる。リ

    リーマンゼータ関数 - Wikipedia
  • リーマン予想 - Wikipedia

    リーマンのゼータ関数 ζ(s) (s = 1/2 + ix) の実部(赤線)と虚部(青線)。最初の非自明な零点が Im s = x = ±14.135, ±21.022, ±25.011 に現れる。 臨界線(s = 1/2 + ix)上を移動する点の軌跡をゼータ関数によって変換したもの。この軌跡は繰り返し原点を通る曲線になる。 直線の実部を変化させたときゼータ関数が描く軌跡の変化。実部が 1/2 のときに上記と同じく軌跡は繰り返し原点を通る曲線になる。 ミレニアム懸賞問題 数学においてリーマン予想(リーマンよそう、英: Riemann hypothesis, 独: Riemannsche Vermutung、略称:RH)は、リーマンゼータ関数の零点が、負の偶数と、実部が 1/2 の複素数に限られるという予想である。リーマン仮説とも。ドイツ数学者ベルンハルト・リーマン(1859)により提唱

    リーマン予想 - Wikipedia
  • 巨大数 - Wikipedia

    英語版記事を日語へ機械翻訳したバージョン(Google翻訳)。 万が一翻訳の手がかりとして機械翻訳を用いた場合、翻訳者は必ず翻訳元原文を参照して機械翻訳の誤りを訂正し、正確な翻訳にしなければなりません。これが成されていない場合、記事は削除の方針G-3に基づき、削除される可能性があります。 信頼性が低いまたは低品質な文章を翻訳しないでください。もし可能ならば、文章を他言語版記事に示された文献で正しいかどうかを確認してください。 履歴継承を行うため、要約欄に翻訳元となった記事のページ名・版について記述する必要があります。記述方法については、Wikipedia:翻訳のガイドライン#要約欄への記入を参照ください。 翻訳後、{{翻訳告知|en|Large numbers|…}}をノートに追加することもできます。 Wikipedia:翻訳のガイドラインに、より詳細な翻訳の手順・指針についての説明があ

  • 三角関数の初歩

    三角関数の初歩 目次 1. sinとcos 1.1 sinとcosの概念 1.2 ここまでの知識の確認 1.3 sinθとcosθの公式 これが分かっていればOK 2. tanの概念 電波の伝搬距離(電離層で反射する場合)の公式に出てきます 3. 三平方の定理と三角関数 線路主任技術者を受ける方は見てください 4. 練習問題 この問題が解ければ、ここを読む必要はないです。 sinとcos sinとcosの概念 結論から言います。以下の図をご覧下さい。 斜辺が1である右下に直角があって左下の角の角度がθ(シータと読みます)の三角形の下の辺の長さをcosθ、右の辺の長さをsinθと定義します。これはθが左下にあった場合です、じゃあ右上にθがあった場合はどうなるかと言うと、 となります。ややこしいので、上の図で覚えた方がいいでしょう。 具体的な値の求め方に行きます。 θが30度の時、sinθとc

  • 恒等式 - Wikipedia

    英語版記事を日語へ機械翻訳したバージョン(Google翻訳)。 万が一翻訳の手がかりとして機械翻訳を用いた場合、翻訳者は必ず翻訳元原文を参照して機械翻訳の誤りを訂正し、正確な翻訳にしなければなりません。これが成されていない場合、記事は削除の方針G-3に基づき、削除される可能性があります。 信頼性が低いまたは低品質な文章を翻訳しないでください。もし可能ならば、文章を他言語版記事に示された文献で正しいかどうかを確認してください。 履歴継承を行うため、要約欄に翻訳元となった記事のページ名・版について記述する必要があります。記述方法については、Wikipedia:翻訳のガイドライン#要約欄への記入を参照ください。 翻訳後、{{翻訳告知|en|Identity (mathematics)|…}}をノートに追加することもできます。 Wikipedia:翻訳のガイドラインに、より詳細な翻訳の手順・指針

  • 三角関数の公式の一覧 - Wikipedia

    最も基的な関数は正弦関数(サイン、sine)と余弦関数(コサイン、cosine)である。これらは sin(θ), cos(θ) または括弧を略して sin θ, cos θ と記述される(θ は対象となる角の大きさ)。 正弦関数と余弦関数の比を正接関数(タンジェント、tangent)と言い、具体的には以下の式で表される: 上記3関数の逆数関数を余割関数(コセカント、cosecant)・正割関数(セカント、secant)・余接関数(コタンジェント、cotangent)と言う。余割関数の略称には cosec と csc の2種類があり、この記事では csc を使用する。

    三角関数の公式の一覧 - Wikipedia
  • グラフ理論 - Wikipedia

    グラフ理論(グラフりろん、英: Graph theory)は、ノード(節点・頂点、点)の集合とエッジ(枝・辺、線)の集合で構成されるグラフに関する数学の理論である。 グラフ(データ構造)などの応用がある。 グラフによって、様々なものの関連を表すことができる。 6つの節点と7つの辺から成るグラフの一例 例えば、鉄道や路線バス等の路線図を考える際には、駅(節点)がどのように路線(辺)で結ばれているかが問題となる一方、線路が具体的にどのような曲線を描いているかは質的な問題とならないことが多い。 したがって、路線図では駅間の距離や微妙な配置、路線の形状などがしばしば地理上の実際とは異なって描かれている。つまり、路線図の利用者にとっては、駅と駅の「つながり方」が主に重要な情報なのである。 このように、「つながり方」に着目して抽象化された「点とそれらをむすぶ線」の概念がグラフであり[1]、グラフがも

  • http://yaruomatome.blog.2nt.com/?no=371

  • 思考実験 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "思考実験" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2013年2月) 思考実験 (しこうじっけん、英: thought experiment、独: Gedankenexperiment)とは、頭の中で想像するのみの実験[1]。科学の基礎原理に反しない限りで、極度に単純・理想化された前提(例えば摩擦のない運動、収差のないレンズなど)で行われるという想定上の実験[2]。 思考実験という言葉自体は、エルンスト・マッハによって初めて用いられた。 思考実験の例としては、古代ギリシャの「アキレスと亀」やガリレオといった古典から、サンデル講義

  • 友愛数 - Wikipedia

    友愛数(ゆうあいすう、英: amicable numbers)とは、異なる 2 つの自然数の組で、自分自身を除いた約数の和が互いに他方と等しくなるような数をいう。親和数(しんわすう)とも呼ばれる。 最小の友愛数の組は (220, 284) である。 220 の自分自身を除いた約数は、1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110 で、和は 284 となる。一方、284 の自分自身を除いた約数は、1, 2, 4, 71, 142 で、和は 220 である。 友愛数はピタゴラス学派の時代にはすでに知られていた(ダンブリクス Damblichus)。現在まで知られる友愛数の組は、すべて偶数同士または奇数同士の組である。 (220, 284) の次に求められた友愛数は (17296, 18416) である。この友愛数はそれ以前にも求められていたが、フェルマーにより再

  • コラッツの予想 Collatz Problem

    自然数 n に対して、n が奇数なら3かけて1加える。偶数なら2で割る。以上の操作を繰り返すと、全ての自然数に関して、最終的に、1→4→2→1のループに入る。 つまり 1→4→2→1 2→1 3→10→5→16→8→4→2→1 4→2→1 5→16→8→4→2→1 6→3→10→5→16→8→4→2→1 7→22→11→34→17→52→26→13→40→20→10→5→… 8→4→2→1 9→28→14→7→… といった感じです。何となく、いずれ1に帰着し、ループに入りそうな気がしますねえ。 しかし、証明はと言うと、未だ解決されていません。この問題に決着を付けるためには、証明するか、反例を見つけるかどちらかですね。反例はと言うと、 ・充分この操作を続けたあとも、元の数、n 以下になることがない数。 ・1→4→2→1以外のループをつくる数。 のどちらかですね。 未だに解決されていない問題を

  • カプレカー数 - Wikipedia

    カプレカー数(カプレカーすう、Kaprekar number)とは、次のいずれかで定義される自然数である[1]。 2乗して上位の半分と下位の半分とに分けて和を取ったとき、元の値に等しくなる自然数。 桁を並べ替えて最大にした数と最小にした数との差を取ったとき、元の値に等しくなる自然数(カプレカー定数)。 名称は、インドの数学者 D. R. カプレカル(英語表記: D. R. Kaprekar[1][2])にちなむ[3][4]。カプレカ数[5]、カプリカ数[6]ともいい、原語であるマラーティー語の発音[7]に近づけてカプレカル数[8][9]ともいう。 定義1[編集] 正の整数を2乗し、上位と下位のゼロでない[10]数桁ずつに分けて、それらの和を取る。この操作によって元の値に等しくなる数をカプレカー数と呼ぶ。 例えば、297 はカプレカー数である。2972 = 88209 であり、これを上位の2

  • パラドックス - Wikipedia

    パラドックスと呼ばれるものの一般的な構造(左側)、そして解決の基的な三つのパターン(右側)[1]。図では示されていないが、前提には明示されるものと、そうでないものがある。パラドックスを取り扱う際は、明示されていない前提にも注意を払っていく必要がある。 パラドックス(paradox)とは、正しそうな前提と、妥当に思える推論から、受け入れがたい結論が得られる事を指す言葉である。逆説、背理、逆理とも言われる。 「妥当に思える推論」は狭義には(とりわけ数学分野においては)形式的妥当性をもった推論、つまり演繹のみに限られる。しかし一般的にはより広く帰納などを含んだ様々な推論が利用される。また「受け入れがたい結論」は、「論理的な矛盾」と「直感的には受け入れがたいが、別に矛盾はしていないもの」に分けることができる。狭義には前者の場合のみをパラドックスと言い、広義には後者もパラドックスという。こうした区

    パラドックス - Wikipedia
  • バナッハ=タルスキーのパラドックス - Wikipedia

    バナッハ=タルスキーのパラドックス: 球を適当に分割して、組み替えることで、元と同じ球を2つ作ることができる。 バナッハ=タルスキーのパラドックス (Banach-Tarski paradox) は、球を3次元空間内で、有限個の部分に分割し、それらを回転・平行移動操作のみを使ってうまく組み替えることで、元の球と同じ半径の球を2つ作ることができるという定理(ただし、各断片は通常の意味で体積を定義できない)。この操作を行うために球を最低5つに分割する必要がある。 バナッハ=タルスキーの証明では、ハウスドルフのパラドックスが援用され、その後、多くの人により証明の最適化、様々な空間への拡張が行われた。 結果が直観に反することから、定理であるが「パラドックス」と呼ばれる。証明の1箇所で選択公理を使うため、選択公理の不合理性を論じる文脈で引用されることがある。ステファン・バナフ(バナッハ)とアルフレト

    バナッハ=タルスキーのパラドックス - Wikipedia
  • 数学SUGEEEEEEEEってなる話聞かせて : 哲学ニュースnwk

    2012年07月22日23:55 数学SUGEEEEEEEEってなる話聞かせて Tweet 1:以下、名無しにかわりましてVIPがお送りします:2012/07/22(日) 09:18:24.07 ID:Agx2mQnx0 聞かせて 4: 以下、名無しにかわりましてVIPがお送りします:2012/07/22(日) 09:20:29.66 ID:lqGi6Hgv0 フィボナッチ数列の一般項を求める式がすごい http://ja.wikipedia.org/wiki/フィボナッチ数 5: 以下、名無しにかわりましてVIPがお送りします:2012/07/22(日) 09:20:41.91 ID:Yy7XzyDxO 0が発明されたのは石板に刻み込んだ数字を消すのが面倒だったから 7: 以下、名無しにかわりましてVIPがお送りします:2012/07/22(日) 09:21:43.71 ID:+vrzR

    数学SUGEEEEEEEEってなる話聞かせて : 哲学ニュースnwk