CAS designed for Hewlett-Packard scientific graphing calculators of the HP 48/49/40/50 series; discontinued in 2009
CAS designed for Hewlett-Packard scientific graphing calculators of the HP 48/49/40/50 series; discontinued in 2009
この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "ボロノイ図" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2011年10月) ボロノイ図の一例 個々の色分けが一つの領域を表す ボロノイ図(ボロノイず、英: Voronoi diagram)は、ある距離空間上の任意の位置に配置された複数個の母点(英: site、サイト)に対して、同一距離空間上の他の点がどの母点に近いかによって領域分けされた図のことである。特に二次元ユークリッド平面の場合、領域の境界線は、各々の母点の二等分線の一部になる。母点の位置のみによって分割パターンが決定されるため、母点に規則性を持たせれば美しい図形を生み出す
英語版記事を日本語へ機械翻訳したバージョン(Google翻訳)。 万が一翻訳の手がかりとして機械翻訳を用いた場合、翻訳者は必ず翻訳元原文を参照して機械翻訳の誤りを訂正し、正確な翻訳にしなければなりません。これが成されていない場合、記事は削除の方針G-3に基づき、削除される可能性があります。 信頼性が低いまたは低品質な文章を翻訳しないでください。もし可能ならば、文章を他言語版記事に示された文献で正しいかどうかを確認してください。 履歴継承を行うため、要約欄に翻訳元となった記事のページ名・版について記述する必要があります。記述方法については、Wikipedia:翻訳のガイドライン#要約欄への記入を参照ください。 翻訳後、{{翻訳告知|en|Level of measurement|…}}をノートに追加することもできます。 Wikipedia:翻訳のガイドラインに、より詳細な翻訳の手順・指針につ
原理(げんり、羅: principium、仏: principe、英: principle、独: Prinzip)とは、哲学や数学において、学問的議論を展開する時に予め置かれるべき言明。 そこから他のものが導き出され規定される始原。他を必要とせず、なおかつ他が必要とする第一のものである。 概説[編集] もともと古代ギリシャ語のΑρχη アルケーという語・概念があり、キケロがそれをラテン語に翻訳する時に「principium プリンキピウム」という語をあてたという[1]。 「principium」という語は、prin + cipiumという構造になっており、「prin」は「最初の」という意味で[注 1]、「cipi」は「cippus」と同グループ・同義の語で「石」などの意味を持つ言葉である。つまり、「principium」は「最初の石」「最初に置かれる石」といった意味の言葉である。 このpr
シャープレイ=シュービック投票力指数(シャープレイ=シュービックとうひょうりょくしすう、Shapley–Shubik power index)は1954年にロイド・シャープレーとマーティン・シュービックによって考案された[1]、投票ゲームでのプレイヤーの投票力の分布を測る手法である。 シャープレイ=シュービック指数、シャープレイ=シュービックパワー指数とも呼ばれる。 立法機関や組織の執行部、株主、議員などの投票システムの投票者はN人ゲームのプレイヤーとみなすことができる。また、同じ選択をするプレイヤーが提携を形成すると考える。ここで、ある法を可決したり当選者を選ぶのに十分な投票を行えるような提携を勝利提携、それ以外を敗北提携と呼ぶ。[2] シャープレイ値に基づき、シャープレイとシュービックは提携の投票力は単にその大きさに拠るものではないと結論付けている。 この指数によって、表面上は明らかで
GNU Scientific Library (GSL) は、C言語で記述された科学技術計算関数のライブラリである。オープンソースであり、GNU General Public Licenseのもとで配布されている。 このプロジェクトは1996年にロスアラモス国立研究所のDr. M. GalassiとDr. J. Theilerの着想に始まり、計算物理の専門家集団(Dr G. Jungman、Dr B. Gough、Dr J. Davies、R. Priedhorsky、Dr M. Booth、Dr F. Rossi、Dr D. Eddelbuettelら)を中心に作成された。 線形計算についてはBLASをサポートしており、CBLAS インターフェイスを実装している。 Linuxをはじめ、Unix系OSを中心にサポートしている。Microsoft Visual Studio用のバイナリもある
ストークスの定理(ストークスのていり、英: Stokes’ theorem)は、ベクトル解析の定理のひとつである。3次元ベクトル場の回転を閉曲線を境界とする曲面上で面積分したものが、元のベクトル場を曲面の境界である閉曲線上で線積分したものと一致することを述べる[1]。定理の名はイギリスの物理学者ジョージ・ガブリエル・ストークスに因む[2][3]。ベクトル解析におけるグリーンの定理、ガウスの定理、ストークスの定理を、より一般的な向きづけられた多様体上に拡張したものも、同様にストークスの定理と呼ばれる。微分積分学の基本定理の、多様体への拡張であるともいえる。 ストークスの定理[編集] ベクトル解析におけるストークスの定理は、ベクトル場の回転を曲面上で面積分したものが、元のベクトル場を曲面の境界で線積分したものに一致することを述べたものであり、以下のように記述される。 ここで S は積分範囲の面
カテゴリ「超複素数系」にあるページ このカテゴリには 16 ページが含まれており、そのうち以下の 16 ページを表示しています。
数学における四元数(しげんすう、英: quaternion)とは、複素数を拡張した数体系であり、虚数単位 i, j, k を用いて a + bi + cj + dk と表せる数のことである。ここで、a, b, c, d は実数であり、虚数単位 i, j, k は以下の関係を満たす。 このとき 1, i, j, k は実数体上線型独立である。 四元数は純粋数学のみならず応用数学、特に3Dグラフィクスやコンピュータビジョンにおいて三次元での回転の計算(英語版)でも用いられる。これはオイラー角や回転行列あるいはそれらに代わる道具などとともに、必要に応じて利用される。 四元数についての最初の記述は、1843年にアイルランドの数学者ウィリアム・ローワン・ハミルトンによってなされ[1][2]、3次元空間の力学に応用された。 四元数の特徴は、積について非可換であることである。ハミルトンは、四元数を三次元
この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "エラトステネスの篩" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2019年6月) エラトステネスの篩 (エラトステネスのふるい、英: Sieve of Eratosthenes) は、指定された整数以下の全ての素数を発見するための単純なアルゴリズムである。古代ギリシアの科学者、エラトステネスが考案したとされるため、この名がついている。
メルセンヌ・ツイスタ (Mersenne twister、通称MT) は擬似乱数列生成器 (PRNG) の1つである。1996年に国際会議で発表されたもので(1998年1月に論文掲載)松本眞と西村拓士による。既存の疑似乱数列生成手法にある多くの欠点がなく、高品質の疑似乱数列を高速に生成できる。考案者らによる実装が修正BSDライセンスで公開されている。 「メルセンヌ・ツイスタ」は厳密にはある手法に基づいた乱数列生成式(あるいは生成法)の族を指し、内部状態の大きさや周期は設定可能である。以下の長所と短所では、メルセンヌ・ツイスタ自体、よく使われている生成法のMT19937、さらにその実装について、区別することなく述べている。 219937-1 (≒4.315×106001) という長い周期が証明されている。 この周期は、名前の由来にもなっているように(24番目の)メルセンヌ素数であり、保証され
メルセンヌ数(メルセンヌすう、英: Mersenne number)とは、2の冪よりも 1 小さい自然数、すなわち 2n − 1(n は自然数)の形の自然数のことである。これを Mn で表すことが多い。メルセンヌ数を小さい順に列挙すると となる。メルセンヌ数は2進法表記で n 桁の 11⋯11、すなわちレピュニットとなる。 Mn = 2n − 1 が素数ならば n もまた素数であるが、逆は成立しない (M11 = 2047 = 23 × 89)。素数であるメルセンヌ数をメルセンヌ素数(メルセンヌそすう、英: Mersenne prime)という。なお、「メルセンヌ数」という語で、n が素数であるもののみを指したり[1]、さらに狭義の意味でメルセンヌ素数を指す場合もある[注釈 1]。 Mn が素数ならば n もまた素数であることは、次の式から分かる[2][3]: 2ab − 1 = (2a
次の注意は有限「平面」のみに適応できる。 有限平面幾何にはアフィン平面幾何と射影平面幾何の二種類がある。アフィン幾何においては平行線は通常の意味で使われる。これに対し、射影幾何においては任意の二つの直線がただひとつの交点をもつ、すなわち平行線は存在しない。有限アフィン平面幾何と有限射影平面幾何は、どちらも簡単な公理系によって構成される。 アフィン平面幾何は、空でない集合(その要素は「点」と呼ばれる)、および、次の条件を満たすようなの部分集合の空でない族(その要素は「直線」と呼ばれる)から構成される。 2つの異なる任意の点が与えられたとき、それらを含むような直線がただ一つだけ存在する。 平行線公準 :直線と上にない一点が与えられたとき、を含みとは交点をもたない、すなわちとなるような直線がただ一つだけ存在する。 どの3点も同一直線にないような4点集合が存在する。 最後の公理は、この幾何が空集合
この記事には独自研究が含まれているおそれがあります。 問題箇所を検証し出典を追加して、記事の改善にご協力ください。議論はノートを参照してください。(2016年2月) 0 の 0 乗(れいのれいじょう)は、累乗あるいは指数関数において、底を 0、指数を 0 としたものである。その値は、代数学、組合せ論などの文脈では通常 1 と定義される[注 1]一方で、解析学の文脈では二変数関数 xy が原点 (x, y) = (0, 0) において連続とならないため定義されない場合もある。 実数 x の正整数 n 乗は、素朴には、n 個の x を掛け合わせたものである。厳密には、次のように再帰的に定められる。 x0 を定義する場合には、関係式 が n = 0 でも成立するように定義を拡張するのが自然である。 そこで、 に無理やり n = 0 を代入すれば、x0 + 1 = x0 × x すなわち x =
一階述語論理(いっかいじゅつごろんり、英: first-order predicate logic)とは、個体の量化のみを許す述語論理 (predicate logic) である。述語論理とは、数理論理学における論理の数学的モデルの一つであり、命題論理を拡張したものである。個体の量化に加えて述語や関数の量化を許す述語論理を二階述語論理(英: second-order predicate logic)と呼び、さらなる一般化を加えた述語論理を高階述語論理(英: higher-order predicate logic)という。本項では主に一階述語論理について解説する。二階述語論理や高階述語論理についての詳細はそれぞれの記事を参照。 命題論理では文を構成する最も基本的な命題(原子命題)は命題記号と呼ぶ一つの記号によって表していた。それに対し、一階述語論理においては、最も基本的な命題は原子論理式と
対数スケールのグラフ、この数直線上にランダムに点を取ると、その地点が表す数値の最初の桁が1になる確率がおおよそ30 パーセントである。 ベンフォードの法則(ベンフォードのほうそく、Benford's law)とは、自然界に出てくる多くの(全てのではない)数値の最初の桁の分布が、一様ではなく、ある特定の分布になっている、という法則である。この法則によれば、最初の桁が1である確率はほぼ3分の1にも達し、大きな数値ほど最初の桁に現れる確率は小さくなり、9になると最初の桁に現れる確率は20分の1よりも小さくなる。数理的には、数値が対数的に分布しているときは常に最初の桁の数値がこのような分布で出現する。以下に示したような理由により、自然界での測定結果はしばしば対数的に分布する。別の言い方でいえば、対数的な測定結果があらゆる場所に存在する。 この直感に反するような結果は、電気料金の請求書、住所の番地、
オイラー・マスケローニ定数 (英: Euler-Mascheroni constant)[1]、オイラーのγ (英: Euler's gamma) とも呼ぶ。ちなみに、オイラーはこの定数を表わすのに記号 C を用いた。γ を用いたのはロレンツォ・マスケローニである[2]。 この値は、およそ0.57721 56649 01532 86060 65120 90082 40243 10421 59335 93992 35988 05767 23488 48677 26777 66467 09369 47063 29174 67495...である。 オイラーの定数は超越数であろうと予想されている。しかしながら、無理数であるかどうか、および、円周率との関係性も、数学上の未解決問題の一つである。
ネイピア数の無理性の証明(ねいぴあすうのむりせいのしょうめい)は、1744年にオイラーが初めて行った。実際、ネイピア数 e は 2 < e < 3 を満たす無理数である。証明は背理法による。すなわち、e が有理数であると仮定して矛盾を導く。e が無理数であることの証明は、円周率 π が無理数であることの証明よりずっと易しい。π の無理性が初めて示されたのは1761年のことである。 e を底とする指数関数 ex は以下のようにテイラー展開される。 x = 1 を代入すると 以下、これを e の定義として無理数であることを証明する。 e = a/b を満たす自然数 a, b が存在すると仮定すると b! ⋅ e は以下のように展開される。 左辺は であるから自然数である。右辺は ( ) 内の b! から b!/b! までの項は全て自然数であるが、{ } 内の b!/(b + 1)! 以降の全て
円周率 π は超越数であるため、コンパスと定規を有限回用いて円と等面積の正方形を作図することは不可能である。 超越数(ちょうえつすう、英: transcendental number)とは、代数的数でない複素数、すなわちどの有理係数の代数方程式 (n は正の整数、各 ai は有理数) の解(英語版)にもならない複素数のことである。有理数は一次方程式の解であるから、超越的な実数はすべて無理数であるが、例えば無理数 √2 は二次方程式 x2 − 2 = 0 の解であるから、その逆は成り立たない。超越数論は、超越数について研究する数学の分野で、与えられた数の超越性の判定などが主な問題である。 よく知られた超越数にネイピア数 e(自然対数の底)や円周率 πがあり、またほとんど全ての複素数が超越数であることが分かっている。ただし超越性が示されている複素数のクラスはほんの僅かであり、与えられた数が超越
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く