PyConJP2017の資料 Python Spark PySpark PyConJP 2017 Apache Spark
PyConJP2017の資料 Python Spark PySpark PyConJP 2017 Apache Spark
はじめまして。2018年1月に入社した奥田(@yag_ays)です。 先日、scikit-learn-contribの1つであるCategory Encodersの最適化を実装したPull Requestがマージされたので、そこに至るまでのプロファイルや最適化の過程を紹介したいと思います。 普段、私の仕事は機械学習やデータ分析がメインで、あまりPythonの処理レベルで早いコードを書いたりすることはありません。もちろん最適化なんてことについては、あまり経験を持っていない素人なのですが、この記事が皆さんのプロジェクトを最適化する際の参考になれば幸いです。 tl;dr scikit-learn-contribの中のcategory_encodersの実行速度を最適化した Pythonのプロファイリングにはline_profiler、デバッグにはpdbが便利 Pandasのカラムをfor文で書き
去年の8月に RejectKaigi 2017 にて発表した、「PythonのコードをPython ASTベースでRubyに変換を行う py2rb.py」が、初版公開できるレベルになったので、python のパッケージとして PyPIで公開しました。 pypi.python.org github.com py2rb.py は、Pythonの機械学習関連のライブラリ、特に Chainer を Ruby に移植するためにPythonからRubyへのトランスコンパイラを作成している位置づけになります。 py2rb.py 開発の経緯の詳細は、下記 blog をご覧ください。 naitoh.hatenablog.com 特徴 Python ASTベースで1行単位にRubyへ翻訳 Python => Ruby (メソッド,クラス,変数) : decorator や yield 等は未サポート impo
#参考 @kidach1 さんの投稿をPythonに書き換えてるだけです。 @kidach1 さん、いつもありがとうございます。 https://qiita.com/kidach1/items/4b63de9ad5a97726c50c #概要 改めて基本を学ぶ。 参考「Rubyによるデザインパターン第1章」→この投稿はPython #デザインパターンとは プログラミングにおいて繰り返し現れる問題に対する、適切解のパターン。 無駄無く設計されたオブジェクト指向プログラムの実現をサポート。 パターンとしてカタログ化されていることで 車輪の再発明を防ぐ #デザインパターンの根底にある5つの考え 変わるものを変わらないものから分離する プログラムはインターフェイスに対して行う(実装に対して行わない) 継承より集約 委譲、委譲、委譲 必要になるまで作るな(YAGNI) #変わるものを変わらないものか
【2021/1/11】2021年版を公開しました 【2020/1/9】2020年版もあります, こちらもよろしくおねがいします! 【2019/8/12】一部書籍のリンクを最新版に更新しました 【2018/12/24追記】最新版を公開しました!「Python本まとめ・2019年版 - Webとデータ分析を初心者が仕事にするまで - Lean Baseball」 機械学習にWebアプリ,そしてFintechと,今年(2017年)は昨年(2016年)以上にPython界隈が賑やかな一年でした. Pythonでお仕事と野球データ分析を生業としている@shinyorke(野球の人)ですこんにちは. このエントリーでは,そんなPythonの学び方・本が充実した今年から来年(2018年)に移るにあたり, 最短距離でPythonレベルを上げるための学び方・読むべき本の選び方〜2018 をまとめてみました.
はじめに どうも初めまして、グレブナー基底大好きbot (Twitter:@groebner_basis) です。 最近、プログラマ向けの数学のセミナーや勉強会*1が開催されるなど、コンピュータを専門にする人が純粋数学に興味を持つ機会が増えてきました。 そこで、この記事では、計算科学とも関わりの深い「可換環論」について、プログラミングの側面から解説していきたいと思います。 可換環論とは 可換環論は、代数学に含まれる分野で、140年以上の歴史があります。名前の通り、「可換環」と呼ばれる数学的対象を研究する分野です。この可換環については、後々詳しく説明したいと思います。 かつての数学者は、計算といえば紙に書く「手計算」が主な手法でした。しかし、近年では、コンピュータの発達に伴い、可換環論の色々な計算が数式処理システム(Computer Algebra System) で実現できるようになりまし
Python のイテレータとジェネレータという概念は意外と分かりにくい。 今回は、実は深い関わり合いを持った両者についてまとめてみることにする。 というのも、最終的にジェネレータを理解するにはイテレータへの理解が欠かせないためだ。 使った環境は次の通り。 $ sw_vers ProductName: Mac OS X ProductVersion: 10.12.6 BuildVersion: 16G1036 $ python --version Python 3.6.3 イテレータとは まず、そもそもイテレータとは何者だろうか。 それについて、いくつかの側面から考えてみることにしよう。 使い方から考える 最初は、使い方という側面からイテレータとは何かを考えてみよう。 このとき、答えは「要素を一つずつ取り出すことのできるオブジェクト」になる。 実際に、使い方からイテレータについて見ていこう。
このドメインは お名前.com から取得されました。 お名前.com は GMOインターネットグループ(株) が運営する国内シェアNo.1のドメイン登録サービスです。 ※表示価格は、全て税込です。 ※サービス品質維持のため、一時的に対象となる料金へ一定割合の「サービス維持調整費」を加算させていただきます。 ※1 「国内シェア」は、ICANN(インターネットのドメイン名などの資源を管理する非営利団体)の公表数値をもとに集計。gTLDが集計の対象。 日本のドメイン登録業者(レジストラ)(「ICANNがレジストラとして認定した企業」一覧(InterNIC提供)内に「Japan」の記載があるもの)を対象。 レジストラ「GMO Internet Group, Inc. d/b/a Onamae.com」のシェア値を集計。 2023年5月時点の調査。
The document discusses Python programming and data science tools like NumPy, Scikit-learn, and Cython. It provides examples of using NumPy to quickly sum a large array and speed up a prime number calculation with Cython. It also briefly mentions past Python conference talks and techniques like spectral clustering and activation functions.Read less
Join us in Silicon Valley September 18-19 at the 2024 PyTorch Conference. Learn more. Learn Get Started Run PyTorch locally or get started quickly with one of the supported cloud platforms Tutorials Whats new in PyTorch tutorials Learn the Basics Familiarize yourself with PyTorch concepts and modules PyTorch Recipes Bite-size, ready-to-deploy PyTorch code examples Intro to PyTorch - YouTube Series
自分で小さいツールを作る時に心に留めているtipsです. 書き始めたときは「どうせ書捨てだし」と思って書き始めると意外と長い間,もしくはいろんなところで使うことになったりするので,気をつけておくと後から楽になるというような小技です.大規模なソフトウェアの開発ではまた違った流儀があると思います. メインルーチンを関数にする 関数名はなんでもいいのですが,自分は趣味で main() という名前の関数を用意し,メインルーチンは全てそこに書くようにしています. pythonの小さなサンプルコードを見たりすると関数外の部分にベタで実行コードが書かれていたりします.もちろんそれでも動くのですが,以下の2点で後々面倒になることがあります. グローバル変数だらけになり管理が追いつかなくなる:「どうせ小さなスクリプトだし」ではじめると最初は見通しが良くてもだんだんどこでどの変数名を使っているか分からなくなっ
Python has had awesome string formatters for many years but the documentation on them is far too theoretic and technical. With this site we try to show you the most common use-cases covered by the old and new style string formatting API with practical examples. All examples on this page work out of the box with with Python 2.7, 3.2, 3.3, 3.4, and 3.5 without requiring any additional libraries. Fur
はじめに Python 3.5で型ヒント機能が導入され,型を意識できるようになりました。しかし,型ヒントの付いたコードを目にする機会は殆どありません。自分も当初は「Pythonに静的型付けは必要なのか?」と懐疑的でしたが,自分のコードに型ヒントを付けてみたところ,"oh my(py)!" と思ってしまい,広めたいと思ったのでこの記事を書くことにしました。 これから3回に分けて,型ヒントを活用して,Pythonで体の拡大を実装していきます。実装に際して,taketo1024さんの記事「Swiftで代数学入門」を大変参考にしました。 ちなみに筆者は代数拡大には疎いので(結城浩著「数学ガール/ガロア理論」を読んだ程度),誤りがあれば教えていただけますと幸いです。 代数拡大については,taketo1024さんの記事やその他のWebページに丁寧に書かれているので,この記事では数学的な話にはあまり触れ
GitHubの Trending を眺めていたりすると時たま気になるpython製のツールやライブラリがあって試したくなったりします。 でもよく知らないし試したらすぐ消すようなものを普段の環境に入れるのも抵抗があって、その都度仮想環境を作ったりしていました。 try はそんな時に手軽に仮想環境を作って使い終わったらさくっと廃棄してくれる便利ツールです。 インストール tryで作る環境は2.7などでもいいようですが、try自体はPython3.4以上の対応のようです。 python3 -m pip install trypackage これ(またはpip3など)でインストールでき、コマンドラインからtryコマンドが使えるようになります。 使い方 try [試したいライブラリ名] [[ライブラリ2] [ライブラリ3] ...] これで新しい仮想環境が作られてライブラリがインストール&impor
- はじめに - 最近はWebスクレイピングにお熱である。 趣味の機械学習のデータセット集めに利用したり、自身のカードの情報や各アカウントの支払い状況をスクレイピングしてスプレッドシートで管理したりしている。 最近この手の記事は多くあるものの「~してみた」から抜けた記事が見当たらないので、大規模に処理する場合も含めた大きめの記事として知見をまとめておく。 追記 2018/03/05: 大きな内容なのでここに追記します。 github.com phantomJSについての記載が記事内でありますが、phantomJSのメンテナが止めたニュースが記憶に新しいですが、上記issueにて正式にこれ以上バージョンアップされないとの通達。 記事内でも推奨していますがheadless Chrome等を使う方が良さそうです。 - アジェンダ - 主に以下のような話をします。 - はじめに - - アジェンダ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く