タグ

algorithmとAlgorithmに関するOooのブックマーク (60)

  • Google Prediction API - Google Code

    How do I start? Learn more about Google Prediction API. Request access. Try out the sample code. What is the Google Prediction API? The Prediction API enables access to Google's machine learning algorithms to analyze your historic data and predict likely future outcomes. Upload your data to Google Storage for Developers, then use the Prediction API to make real-time decisions in your applications.

  • Jimmy Lin » Data-Intensive Text Processing with MapReduce

  • EventuallyConsistent - 結果整合性

    EventuallyConsistent - 結果整合性 目次 この文書について 結果整合性 歴史の話 クライアント側の整合性 サーバ側の整合性 まとめ 結果整合性 この文書について Werner Vogels "Eventually Consistent" の日語訳です. http://www.allthingsdistributed.com/2007/12/eventually_consistent.html 推敲歓迎: 誤訳, タイポ, 訳語の不統一, そのほか... 近年, データ複製の文脈で 結果整合性(eventual consistency) に関する議論が盛んだ. この記事では大規模データの複製における原則や抽象, 高可用性とデータ整合性のトレードオフに関する話題をいくつか集めてみたいと思う. 現在進行中の分野であり, 全ての定義が最初から明快であるとは思わないでほ

  • 最強最速アルゴリズマー養成講座:アルゴリズマーの登竜門、「動的計画法・メモ化再帰」はこんなに簡単だった (1/5) - ITmedia エンタープライズ

    動的計画法とメモ化再帰 今回は、非常によく用いられるアルゴリズムである、「動的計画法」「メモ化再帰」について説明します。この2つはセットで覚えて、両方使えるようにしておくと便利です。 なお、メモ化再帰に関しては、第5・6回の連載の知識を踏まえた上で読んでいただけると、理解が深まります。まだお読みになっていない方は、この機会にぜひご覧ください。 中学受験などを経験された方であれば、こういった問題を一度は解いたことがあるのではないでしょうか。小学校の知識までで解こうとすれば、少し時間は掛かるかもしれませんが、それでもこれが解けないという方は少ないだろうと思います。 この問題をプログラムで解こうとすると、さまざまな解法が存在します。解き方によって計算時間や有効範囲が大きく変化しますので、それぞれのパターンについて考えます。 以下の説明では、縦h、横wとして表記し、プログラムの実行時間に関しては、

    最強最速アルゴリズマー養成講座:アルゴリズマーの登竜門、「動的計画法・メモ化再帰」はこんなに簡単だった (1/5) - ITmedia エンタープライズ
  • Algorithm Ink - AzarAsk

    Using algorithms to solve problems can be a wonderful option when the result must be 100% exact or if each decision must follow the same method. A different method might be required if performance is the most important consideration. Approaching a problem the proper way can often be the key to finding a solution that works. An algorithm is a term used in psychology to describe a few of these probl

  • 加藤 和彦 Kazuhiko KATO, Dr. Prof.

    加藤 和彦 Kazuhiko KATO, Dr. Prof.
  • GitHub - google/diff-match-patch: Diff Match Patch is a high-performance library in multiple languages that manipulates plain text.

    You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session. Dismiss alert

    GitHub - google/diff-match-patch: Diff Match Patch is a high-performance library in multiple languages that manipulates plain text.
  • 一番右端の立っているビット位置を求める「ものすごい」コード - 当面C#と.NETな記録

    一番右端の立っているビット位置(RightMostBit)を求めるコードで速いのないかなーと探していたら、ものっっっすごいコードに出会ってしまったのでご紹介。2ch のビット演算スレで 32bit 値のコードに出会って衝撃を受けて、その後 64bit 値版のヒントを見つけたのでコードを書いてみました。 この問題は ハッカーのたのしみ―物のプログラマはいかにして問題を解くか (Google book search で原著 Hacker's delight が読めたのでそれで済ませた) で number of trailing zeros (ntz) として紹介されています。bit で考えたときに右側に 0 がいくつあるかを数えるもの。1 だと 0、2 だと 1、0x80 なら 7、12 なら 2 といったぐあい。0 のときに表題どおりの問題として考えるといくつを返すの?ってことになるので、

    一番右端の立っているビット位置を求める「ものすごい」コード - 当面C#と.NETな記録
  • ネットワークプログラムのI/O戦略 - sdyuki-devel

    図解求む。 以下「プロトコル処理」と「メッセージ処理」を分けて扱っているが、この差が顕著に出るのは全文検索エンジンや非同期ジョブサーバーなど、小さなメッセージで重い処理をするタイプ。ストリーム指向のプロトコルの場合は「プロトコル処理」を「ストリーム処理」に置き換えるといいかもしれない。 シングルスレッド・イベント駆動 コネクションN:スレッド1。epoll/kqueue/select を1つ使ってイベントループを作る。 マルチコアCPUでスケールしないので、サーバーでは今時このモデルは流行らない。 クライアントで非同期なメッセージングをやりたい場合はこのモデルを使える: サーバーにメッセージを送信 イベントハンドラを登録;このときイベントハンドラのポインタを取っておく イベントハンドラ->フラグ がONになるまでイベントループを回す イベントハンドラ->結果 を返す 1コネクション1スレッ

    ネットワークプログラムのI/O戦略 - sdyuki-devel
  • 1時間でわからせたコンシステントハッシュで仮想ノードが必要な理由 - 西尾泰和のはてなダイアリー

    ConsistentHashing - コンシステント・ハッシュ法 とあるチャットで聞かれて図まで書いて解説したのでもったいないからエントリー化。ちなみにチャットが1時間弱だったのでこういうタイトルにした。 で、Bが消えるとBの責任範囲が全部Dに押し付けられてDがかわいそうでしょ。 Dの仕事が増えるでしょ。Cとか暇そうじゃん!サーバを複数用意しているメリットが薄れてる。みんなが同じくらい働くのが望ましい。 で、Bが1個の点で表現されているから「Bの手前」もDの1個だけで、そのせいで全部Dが引き受けるはめになった。つまり、仕事が細かく分割されてなくて1個の塊だから引き継ぐ人も1人だけで引き継いだ人涙目。あらかじめ仕事を100分割しとけばみんなで分担して肩代わりできて幸せだよね。 だからサーバが5個だけど点は5個じゃなくて500個打とう。それが仮想ノード。 実装はどうするの?という質問に対して

    1時間でわからせたコンシステントハッシュで仮想ノードが必要な理由 - 西尾泰和のはてなダイアリー
  • ConsistentHashing - コンシステント・ハッシュ法

    ConsistentHashing - コンシステント・ハッシュ法 目次 この文書について コンシステント・ハッシュ法 実例 実装 用途 コンシステント・ハッシュ法 この文書について "Tom White's Blog: Consistent Hashing" の日語訳です. http://weblogs.java.net/blog/tomwhite/archive/2007/11/consistent_hash.html 推敲歓迎: 誤訳, タイポ, 訳語の不統一, そのほか... 原文のライセンス: http://creativecommons.org/licenses/by-nc-sa/2.0/ 私は今までに何度かコンシステント・ハッシュ法にとりくんだことがある。 このアイデアをあらわした論文 ( David Karger らによる Consistent Hashing and R

  • シムシティーの仕組み

    シムシティーを作り始めていちばん最初に考えたのは、街を一種の生き物のように表現できないかってことだった。 僕が街についてどう考えているかはすでに説明したけど、大事なのは街を構成する建物とか道路じゃなくって、そこでどんな活動が行なわれているかってことだと思うんだ。道路を車が走り、電車が動き、人々が動き回り、常に要素が変化し続ける“動きのある”システム。街を表現する方法っていうと誰でも地図を思い浮かべると思うけど、僕は動きがない地図じゃなくって、たとえば飛行機から眺めた街、動きのある世界をディスプレイに表現しようって考えた。それこそが僕の考える街の姿だからね。 それともう一つ考えたことは、プレイヤーに伝える情報をできるだけわかりやすく、それも“面白い”って思えるような形で表現しようってことだった。シミュレーション・ソフトっていうとたいてい数値や図表がたくさん出てくるけれど、数字が並んでいるのを

  • おとうさん、ぼくにもYコンビネータがわかりましたよ! - 2009-04-09 - きしだのはてな

    やっと、Yコンビネータが何を意味するものなのか、どういう意義があるのかがわかりました。 名前を使わず再帰ができますよ!というだけのものじゃなかったのですね。 まずλありき 関数の話をしたいのです。 そのとき、いちいち hoge(x) = x * 2 としてhogeを・・・、とか名前をつけて話を進めるのがめんどうなので、関数を値としてあらわすと便利ということで、λという値を定義するのです。 そうすると、上のhoge関数なんかはλ(x)(x*2)などとあらわせますが、引数をあらわすのに()を使うといろいろまぎらわしいので、 λx.x*2 のように表記します。 というのがλ。 このとき、λになにかわたされたら、引数としてあらわされる部分を単純におきかえます。 (λx.x*2)y とあったら、xの部分をyでおきかえて (λx.x*2)y → y * 2 となります。λの引数部分を与えられた引数で置

    おとうさん、ぼくにもYコンビネータがわかりましたよ! - 2009-04-09 - きしだのはてな
  • クラスタリングの定番アルゴリズム「K-means法」をビジュアライズしてみた - てっく煮ブログ

    集合知プログラミング を読んでいたら、K-means 法(K平均法)の説明が出てきました。K-means 法はクラスタリングを行うための定番のアルゴリズムらしいです。存在は知っていたんだけどいまいちピンときていなかったので、動作を理解するためにサンプルを作ってみました。クリックすると1ステップずつ動かすことができます。クラスタの数や点の数を変更して、RESET を押すと好きなパラメータで試すことができます。こうやって1ステップずつ確認しながら動かしてみると、意外に単純な仕組みなのが実感できました。K-means 法とはK平均法 - Wikipedia に詳しく書いてあるけど、もうすこしザックリと書くとこんなイメージになります。各点にランダムにクラスタを割り当てるクラスタの重心を計算する。点のクラスタを、一番近い重心のクラスタに変更する変化がなければ終了。変化がある限りは 2. に戻る。これ

  • scale out の技術 〜 consistent hashing 編 (cloud 研究会, December 19, 2008)

    scale out の技術 〜 consistent hashing 編 首藤 一幸 2008年 12月 19日 cloud 研究会 (丸山不二夫氏主宰) スライド: shudo-cloud-scaleout-20081219.pdf (PDF ファイル, 840 KB) 関連資料: オーバレイによる分散キャッシュ: ウェブページ (21 pages, HTML) Unstructured overlay と Sturectured overlay: ウェブページ (34 pages, HTML) Back to Publications のページ 首藤のページ scale out の方策

  • MD5 Exploitが潜在的にSSLセキュリティを危険にさらす

    あなたにとって重要なトピックや同僚の最新情報を入手しましょう最新の洞察とトレンドに関する最新情報を即座に受け取りましょう。 継続的な学習のために、無料のリソースに手軽にアクセスしましょうミニブック、トランスクリプト付き動画、およびトレーニング教材。 記事を保存して、いつでも読むことができます記事をブックマークして、準備ができたらいつでも読めます。

    MD5 Exploitが潜在的にSSLセキュリティを危険にさらす
    Ooo
    Ooo 2009/01/09
    暗号強度は128bit以上 + md5使わないで良いのかな?
  • GC - GCアルゴリズム詳細解説 - livedoor Wiki(ウィキ)

    GCアルゴリズム詳細解説 日語の資料がすくないGCアルゴリズムについて詳細に解説します トップページページ一覧メンバー編集 × GC 最終更新: author_nari 2010年03月14日(日) 20:47:11履歴 Tweet このWikiが目指す所 GCとは? GCを学ぶ前に知っておく事 実行時メモリ構造 基アルゴリズム編 Reference Counter Mark&Sweep Copying 応用アルゴリズム編 IncrementalGC 世代別GC スナップショット型GC LazySweep TwoFinger Lisp2 Partial Mark and Sweep -Cycle Collection- Mostly Parallel GC train gc MostlyCopyingGC(Bartlett 1989) TreadmillGC(Barker 1992)

    GC - GCアルゴリズム詳細解説 - livedoor Wiki(ウィキ)
  • グラフを扱うJavaライブラリ「Jung」の紹介 - Twitterのグラフ構造を視覚化 - public static void main

    java-ja 第12回のLTで話そうと思ったのですが、出番がなかったので資料をブログで公開しておきます。 Jungは研究などでグラフ構造が出たときに、理解しやすくするために可視化するのに使っています。他にもいくつかグラフを扱うライブラリは存在していますが、日語の資料があったのと拡張可能なことが多かったのでJungを結果的に使うようになりました。 以下はそのJungについての簡単な解説です。 Jungとは Jungの正式名称はJava Universal Network/Graph Frameworkで、ネットワーク(グラフ) 構造の分析や視覚化を行うためのJavaのOSSライブラリです。グラフ理論、データマイニング、ソーシャルネットワーク分析のアルゴリズムを数多く実装しています。 安定バージョンは1.7.6で最新は2.0betaで、BSDライセンスで使用できます。 http://jun

    グラフを扱うJavaライブラリ「Jung」の紹介 - Twitterのグラフ構造を視覚化 - public static void main
  • Undo,Redoの実装って何十回もやってる気がする - あしあと日記

    undo,redoの実装って何十回もやってる気がする。毎回同じパターンだ。undo,redoが登場するような編集ソフトは大体同じパターンに落とせる。フレームワークも作った。ブログにそういう内容を書きたいが面倒くさい。需要があれば面倒でも書くんだけどなあ http://twitter.com/youpychan/status/994486992 という発言をしたら何人か反応を頂いたので書いてみることにする。 需要があるなら書こう。undo,redoだけじゃなくてグラフィカルな編集ソフト全般の話をいつかまとめたいと思っていたので、ちょいとシリーズで書いてみようかとおもう http://twitter.com/youpychan/status/994636764 書こうと思う。 まずUndo,Redoについて。 Unod,Redoってみなさんどういう風に実装しているでしょうか? 私はコマンドパタ

    Undo,Redoの実装って何十回もやってる気がする - あしあと日記
  • マージ・ソート : 巨大データのソート法:CodeZine

    はじめに まずはともあれ腕試し、この問題を解いてみてくださいな:【問1】 デタラメな順序で並んだ文字列の集合がテキストファイル「input.txt」に収められています。この文字列群を辞書順(昇順)に並び換えたテキストファイル「sorted.txt」を作りなさい。 ※各文字列は改行で区切られています。  プログラミング教の練習問題、あるいは学校の課題で出てきそうな“お馴染み”の問題です。ソート(整列)アルゴリズムの実装には配列/代入/条件分岐/ループなどなどプログラミングの基中の基となる構文を総動員するため、練習問題としてよく使われますね。 早速解いてみましょう、ソート・アルゴリズムにはこれまたお馴染みのバブル・ソートを使います。C#、VB.NETC++/CLIの3まとめて一気にいきますよ: using System; using System.IO; using System