タグ

ブックマーク / note.com/shi3zblog (8)

  • 噂のノーコードAIシステム開発環境Difyを使ってツールを作ってみた。使った感想|shi3z

    最近にわかに話題のLLMツール「Dify」を僕も使ってみた。 いいところと「?」となったところがあったので纏めておく Difyとは、GUIでワークフローを組むことができるLLM-OPSツールだ。 ComfyUIのようにワークフローが組めたり、GPTsのように自分専用のアシスタントを作れたりできる。 特に、OpenAIのGPTシリーズとAnthropicのClaude-3、そしてCohereのCommand-R+なんかを組み合わせて色々できるところは良いところだと思う。また、ローカルLLMにも対応しているので、企業内でのチャットボットを作るんだったらGPTsよりこっちの方がいいだろう。 元々色々なテンプレートが用意されているが、テンプレだけ使うとGPTsっぽいものを作れる(それだってすごいことだが)。テンプレを改造するだけでも欲しいものが作れる人はいるし、ここはノーコード環境と言える テンプ

    噂のノーコードAIシステム開発環境Difyを使ってツールを作ってみた。使った感想|shi3z
  • Command-R+の衝撃! 100Bモデルで本当にこんなことできんの!?ダウンロードしてローカルで実行可能|shi3z

    Command-R+の衝撃! 100Bモデルで当にこんなことできんの!?ダウンロードしてローカルで実行可能 Transformerの発明者らが起業したCohereAIがとんでもないモデルを出してきた。この業界では毎週のように「えーー!」ということが起きるのだが、その中でも年に1,2回起きる「えーーーっ」が起きたのでブログでも紹介しておきたい。 Command-R+(おそらくコマンダープラスと読むのが正しい)というモデルは、わずか100Bで、GPT-4,Claude-3並と言われるモデルだ。しかし、それを主張するだけのモデルなど腐るほどある。だが、実際に触ってみると期待外れということが多かった。 ところがCommand-R+は、その性能は桁違いである。というか、もはや僕という人間如きがちょっと触ったくらいでは「GPT-4よりいいね」とか「ここら辺甘いね」とか判断がつかなくなってきてる。しか

    Command-R+の衝撃! 100Bモデルで本当にこんなことできんの!?ダウンロードしてローカルで実行可能|shi3z
    R2M
    R2M 2024/04/06
  • BitNetでMNISTを学習させて見えてきた性質|shi3z

    かれこれ一ヶ月弱くらいBitNetと格闘している。BitNetは、Microsoftが発明したと主張している1-Bit(1.58ビットとも言われる)量子化ニューラルネットワークのことだ。 僕はその辺に落ちてるコードを使って最初の最初はlossが2くらいまで下がったのだが、そもそもLLMはlossが1を切らないと実用性がない。 それ以降は6とか良くて5とかなのでたまたま最初に試したのがうまく行ったようだ。 しかしいつまで経っても良くならないのでBitNetの性質を根的に見直す必要があるのでは?と思い、初心に帰って論理回路を学習させようとした。 BitNetのコードベースははちさんのコードと、Microsoftの公式な論文の実装を併用した。 まず試したのはこのようなコード from bitnet import * import torch from torch import optim im

    BitNetでMNISTを学習させて見えてきた性質|shi3z
    R2M
    R2M 2024/03/25
  • 驚異の1ビットLLMを試す。果たして本当に学習できるのか?|shi3z

    昨日話題になった「BitNet」という1ビットで推論するLLMがどうしても試したくなったので早速試してみた。 BitNetというのは、1ビット(-1,0,1の三状態を持つ)まで情報を削ぎ落とすことで高速に推論するというアルゴリズム。だから正確には0か1かではなく、-1か0か1ということ。 この手法の行き着くところは、GPUが不要になり新しいハードウェアが出現する世界であると予言されている。マジかよ。 https://arxiv.org/pdf/2402.17764.pdf ということで早速試してみることにした。 オフィシャルの実装は公開されていないが、そもそも1ビット(と言っていいのかわからない,-1,0,1の三状態を持つからだ。 論文著者はlog2(3)で1.58ビットという主張をしている)量子化のアルゴリズム自体の研究の歴史は古いので、BitNetによるTransformerの野良実装

    驚異の1ビットLLMを試す。果たして本当に学習できるのか?|shi3z
    R2M
    R2M 2024/02/29
  • これは衝撃!1.5Bで超高性能LLM!RWKV-5-World-v2|shi3z

    Transformerという手法は必ずしも万能でも効率的でもない。 むしろTransformerは非効率的だというのが一般的な見解だ。しかし、Transformerには実績があり、実績という壁の前には多少(かどうかわからないが)の非効率は無視される。 他にもHyenaなどもっと効率的と思われる手法が提案されているが、そうした提案の一つがRWKVである。 そもそもなぜTransformerが必要になったかというと、それまで言語モデルに用いられていたRNN(Recurrent Neural Network)は並列処理が難しかったからだ。並列処理が難しい理由は簡単で、言葉というのは過去から未来へ向かって一方向に進むからである。 言語モデルは全て「この文章に続く単語は何か」を予測し、それを連鎖的に繰り返していくが、RNNは単語をひとつひとつ選んでいかないと次の単語を原理的に予測できない。 これを並

    これは衝撃!1.5Bで超高性能LLM!RWKV-5-World-v2|shi3z
  • GPT-3.5-Turbo / GPT-4-Turbo 1106のJSONモードの使い方|shi3z

    時間未明(午前三時)ものすごいスピードで語られたOpenAI初の開発者向けイベントDevDayで発表されたGPT-4-TurboとGPT-3.5-TurboによるJSONモード。 これはものすごく強力なんだけど、Python APIによる使い方がどこにも描いてないので試行錯誤の末見つけましたので共有いたします。 from openai import OpenAI import openai import os openai.api_key = "<APIキー>" client = OpenAI() def gpt(utterance): #response = openai.chat( response = client.chat.completions.create( #model="gpt-4-1106-preview", model="gpt-3.5-turbo-1106", r

    GPT-3.5-Turbo / GPT-4-Turbo 1106のJSONモードの使い方|shi3z
    R2M
    R2M 2023/11/08
  • LINEの3.6B言語モデルで遊んだら爆笑した|shi3z

    LINEから36億(3.6B)パラメータの大規模言語モデル(LLM)が公開されたので早速遊んでみた。正確には遊んだのは昨日のデイリーAIニュースなのだが、面白かったのでこちらにも転載する。 細かいやり方は大先生のページを参照のこと。 例によってこんな関数を書いた def line(prompt): # 推論の実行 input_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") tokens = model.generate( input_ids.to(device=model.device), min_length=50, max_length=300, temperature=1.0, do_sample=True, pad_token_id=tokenizer.pad_token_i

    LINEの3.6B言語モデルで遊んだら爆笑した|shi3z
    R2M
    R2M 2023/08/16
  • AIで動画&音楽生成はここまで来た!|shi3z

    AI動画生成が結構いいところまできた。 Runway-MLのGen2も素晴らしいのだが、オープンソースのZeroscope-v2-xlがすごい 音楽musicgenで大体作れる これまで音楽生成には否定的だったが、ここまで作れるなら、DJ機材用のループ素材として十分使える気がする。というか30秒も作れるのでループでは勿体無いというか。「久石譲っぽく」とか「ジョン・ウィリアムズ風」とかでそれっぽいものが出てくる。

    AIで動画&音楽生成はここまで来た!|shi3z
  • 1