タグ

ブックマーク / hoxo-m.hatenablog.com (7)

  • 人生で役立つ Grimshaw’s Trick - ほくそ笑む

    概要 人生を生きていると一般化パレート分布のパラメータを最尤推定したいときがあります。しかしこの推定は2変数の非線形最適化問題を解く必要があり数値計算的に不安定なため人生も不安になります。そんなときにGrimshaw’s Trickを使えばこの問題を一元方程式の解を求める問題に帰着でき数値的に安定するので人生も安心です。記事ではそんな人生に役立つGrimshaw’s Trickを紹介します。 1. はじめに 極値理論は確率変数の極値 (最大値または最小値) に関する理論である。 極値理論では1920年から1940年にかけて中心極限定理に似た美しい結果が得られた。 それは確率変数列の極値はその分布によらず3つのタイプの確率分布 (極値分布) に弱収束するというものである (Fisher–Tippett–Gnedenko定理)。 これは極値理論の大定理となったが、実データに対して極値分布のパ

    人生で役立つ Grimshaw’s Trick - ほくそ笑む
    cartman0
    cartman0 2019/04/22
    “一般化パレート分布”
  • ブートストラップ法で信頼区間を求めるときの注意点 - ほくそ笑む

    1. はじめに ブートストラップ信頼区間について調べていたんですが、理論的な求め方は教科書などに載っているのですが、実践的な情報が少ないように思います。 今回、少し調査してみて、実際に適用する際に注意が必要だなと感じたことについて書いておきます。 2. ブートストラップ信頼区間 ブートストラップ法は、理論的に求めるのが難しい統計量を、経験分布からのシンプルなリサンプリングによって推定できるという手法です。 ブートストラップ法では、推定された統計量に対して、その信頼区間を求めることもできます。 このような信頼区間をブートストラップ信頼区間といいます。 ブートストラップ信頼区間を求める方法については色々議論があるようですが、主な手法は次の5つです。 正規分布近似法 ベーシック法 パーセンタイル法 BCa法(bias-corrected and accelerated percentile me

    ブートストラップ法で信頼区間を求めるときの注意点 - ほくそ笑む
  • 統計的消去で擬似相関を見抜こう! - ほくそ笑む

    今日は初心者向け記事です。 はじめに ある範囲の年齢の小学生32人を無作為に選び、算数のテストを受けてもらい、さらにその身長を測定しました。 身長に対する算数の点数のグラフは次のようになりました。 なんと、身長の高い子供の方が、算数の点数が高いという結果になりました! 身長が算数の能力に関係しているなんて、すごい発見です! しかしながら、結論から言うと、この結果は間違っています。 なぜなら、抽出したのは「ある範囲の年齢の小学生」であり、年齢の高い子も低い子も含まれているからです。 年齢が高いほど算数能力は高くなり、年齢が高いほど身長も高くなることは容易に推測できます。 この関係を図で表すと次のようになります。 つまり、年齢と算数能力に相関があり、年齢と身長にも相関があるため、身長と算数能力にも見かけ上の相関が見えているのです。 このような相関を擬似相関と言います。 統計解析では、このような

    統計的消去で擬似相関を見抜こう! - ほくそ笑む
  • ベイズ統計の入門書が出版ラッシュなのでまとめてみた - ほくそ笑む

    【宣伝】2016/09/14 このページに来た方へ。あなたが求めているはこれです。 StanとRでベイズ統計モデリング (Wonderful R) 作者: 松浦健太郎,石田基広出版社/メーカー: 共立出版発売日: 2016/10/25メディア: 単行この商品を含むブログ (10件) を見るまずこれを予約してから下記を読むといいです。 【宣伝終】 最近、ベイズ統計の入門書がたくさん出版されているので、ここで一旦まとめてみようと思います。 1. 基礎からのベイズ統計学: ハミルトニアンモンテカルロ法による実践的入門 (2015/6/25) 基礎からのベイズ統計学: ハミルトニアンモンテカルロ法による実践的入門 作者: 豊田秀樹出版社/メーカー: 朝倉書店発売日: 2015/06/25メディア: 単行この商品を含むブログ (6件) を見る データ分析業界ではかなり有名な豊田秀樹先生のです

    ベイズ統計の入門書が出版ラッシュなのでまとめてみた - ほくそ笑む
  • Watanabe理論勉強会で発表してきました - ほくそ笑む

    このブログの読者には AIC (赤池情報量基準) をご存じの方は多いと思います. AIC は統計モデルの評価指標として世界中で広く使われていますが、これは赤池弘次という日人統計学者により考案されたものです。 これに対し、近年、ベイズ統計学で利用可能な WAIC という情報量基準が考案され、世界中で爆発的に普及しています。 この WAIC を考案したのも日人であり、東工大の渡辺澄夫先生です。 �L‚­Žg‚¦‚é�î•ñ—Ê‹K�€(WAIC) WAIC は、算出すること自体は簡単なのですが、その理論的な根拠として非常に高度な数学が使われています。 この理論について、渡辺先生ご自身が書かれた書籍があります。 Algebraic Geometry and Statistical Learning Theory (Cambridge Monographs on Applied and Com

    Watanabe理論勉強会で発表してきました - ほくそ笑む
  • マイナーだけど最強の統計的検定 Brunner-Munzel 検定 - ほくそ笑む

    対応のない 2 群間の量的検定手法として、最も有名なのは Student の t 検定でしょうか。 以前、Student の t 検定についての記事を書きました。 小標問題と t検定 - ほくそ笑む しかし、Student の t 検定は、等分散性を仮定しているため、不等分散の状況にも対応できるように、Welch の t 検定を使うのがセオリーとなっています。 ただし、これら 2つの検定は分布の正規性を仮定しているため、正規性が仮定できない状況では、Mann-Whitney の U検定というものが広く使われています。 Mann-Whitney の U検定は、正規性を仮定しないノンパラメトリック検定として有名ですが、不等分散の状況でうまく検定できないという問題があることはあまり知られていません。 今日は、これらの問題をすべて解決した、正規性も等分散性も仮定しない最強の検定、Brunner-

    マイナーだけど最強の統計的検定 Brunner-Munzel 検定 - ほくそ笑む
  • 実践 統計モデリング入門 【1. 概要・目次】 - ほくそ笑む

    【宣伝】2016/09/14 このページに来た方へ。あなたが求めているはこれです。 StanとRでベイズ統計モデリング (Wonderful R) 作者: 松浦健太郎,石田基広出版社/メーカー: 共立出版発売日: 2016/10/25メディア: 単行この商品を含むブログ (10件) を見るまずこれを予約してから下記を読むといいです。 【宣伝終】 はじめに 統計モデリングは今後ますます重要になってくる技術です。 現在、Web 上には統計モデリングに関する様々な優良記事があります。 それらの記事は、完成したモデルをスマートに提示しているものが多いようです。 しかし、実際の統計モデリングの現場は決してスマートなものではなく、様々な泥臭い試行錯誤を行いながら地道にモデルを構築していきます。 この一連の記事では、最終的なモデルの完成形をいきなり提示するのではなく、モデル構築の手順をスッテプバイス

    実践 統計モデリング入門 【1. 概要・目次】 - ほくそ笑む
    cartman0
    cartman0 2015/05/12
  • 1