タグ

物理学に関するcucumisinのブックマーク (2)

  • 量子力学に「観測問題」は存在しない|Masahiro Hotta

    前世紀には観測問題を論じる人が多かったのですが、標準的な量子力学にはそのような観測問題はなかったことが現在では分かっております。例えば以下のように理解されています。 (1)波動関数の収縮について: 量子力学は情報理論の一種であり、波動関数は古典力学の粒子のような実在ではなく、情報の集まりに過ぎません。測定によって対象系の知識が増えることで、対象系の物理量の確率分布の集まりである波動関数も更新されるのが波動関数の収縮です。 「系を観測をすると、その波動関数(または状態ベクトル)は収縮し、その変化はシュレディンガー方程式に従わない」と聞いて、前世紀の「観測問題」に目覚めてしまって、「波動関数とは?収縮とは?」と懊悩してしまっている物理学徒は、まず箱の中の古典的なサイコロの目の確率を考察してみて下さい。 各目の出る確率は1/6で、一様分布でしたが、箱をとってサイコロを観測して3の目が出ていれば、

    量子力学に「観測問題」は存在しない|Masahiro Hotta
  • カラビ・ヤウ多様体 - Wikipedia

    原文と比べた結果、この記事には多数の(または内容の大部分に影響ある)誤訳があることが判明しています。情報の利用には注意してください。正確な表現に改訳できる方を求めています。 6次元カラビ・ヤウ・クインティックの 2次元スライス カラビ・ヤウ多様体(カラビ・ヤウたようたい、英:Calabi-Yau manifold)は、代数幾何などの数学の諸分野や数理物理で注目を浴びている特別なタイプの多様体である。特に超弦理論では、時空の余剰次元が6次元(実次元)のカラビ・ヤウ多様体の形をしていると予想されている。この余剰次元の考え方が、ミラー対称性の考えを導くことになった。 カラビ・ヤウ多様体は、1次元の楕円曲線や2次元のK3曲面の高次元版の複素多様体であり、コンパクトケーラー多様体で標準バンドルが自明なものとして定義されることが多い。ただし、他にも類似の(しかし互いに同値ではない)いくつかの定義がある

    カラビ・ヤウ多様体 - Wikipedia
  • 1