タグ

数学に関するdulltzのブックマーク (5)

  • プログラマの為の数学勉強会

    2013年 プログラマの為の数学勉強会 資料 第1回:イントロダクション 第2回:浮動小数点数・極限・微分 第3回:微分法の応用・多変数関数の微分法 第4回:微分法の応用(続き)・方程式の数値解法 第5回:微分方程式の数値解法・積分法 第6回:数値積分法・積分法の応用 第7回:行列・ベクトル・ガウス消去法 第8回:行列式・逆行列・連立一次方程式の直接解法 第9回:線型空間・線型写像・固有値固有ベクトル(その1) 第10回:線型変換・固有値固有ベクトル(その2)・内積空間 第11回:連立一次方程式の反復解法・二次形式・多変数関数の極値・重積分 第12回:確率論入門 第13回:情報量・エントロピー・重要な確率分布・大数の法則・中心極限定理 第14回:擬似乱数の生成法・推定 第15回:検定 第16回:検定の続き, 回帰分析 第17回:回帰分析の続き 第18回:ベイズ統計

  • 初心者用 畳み込み(たたみこみ)解説

    理工系の大学や高専で学ぶ皆さんが だいたい20才くらいになると直面する「たたみこみ」。 特に、 電気回路が必修になっているようなところでは 避けて通れないものです。 さっぱりわからず、 ネットで探せば何かないかなと思ったのに、 いきなり 「合成積とは ∫ot f(t-τ) g(τ) dτ 」 とか出てきちゃって嫌になってる皆さん。 嫌になってる理由は、 「やれといわれればやるけれど、 何を表してるのか意味分からない」 とか 「f(t-τ) の t-τ が なんで出てくるのか納得できない」 とかではありませんか。 基思想を以下に説明するので、今学期 最後のチャンスと思って理解してください。

  • 微分演算子:勾配ベクトル、ヤコビ行列・ヤコビアン、ヘッセ行列・ヘッシアン、ラプラシアン

    ※関連ページ ・グラディエント・ヤコビアン・ヘッシアン:n変数関数のケース/ベクトル値関数のケース ・2変数関数の微分定義:偏微分/高階偏微分/方向微分/全微分/高階全微分 ・2変数関数微分の応用:合成関数の微分/平均値定理・テイラーの定理/極値問題 陰関数定理/逆関数定理/ラグランジュ未定乗数法 ・2変数関数の概念:2変数関数の諸属性/極限/連続/極限の性質/矩形上の積分/点集合上の積分 →文献・総目次

  • スカラー場の勾配 ( grad )、方向微分係数

    サイトのTOP→理系インデックス ベクトル解析のTOP→ベクトル解析インデックス 定義 ( ハミルトン演算子 ) スカラー場 f(x、y、z) に対して、次を定義する。 grad f を f の 『 勾配 』 という。 ここで、演算子として次の記号を用いる。 すると、 ∇ を 『 ナブラ 』 または 『 ハミルトン演算子 』 という。 次のように表記しても意味は同じなので注意しよう。 例えば、f を次のようにおいてみよう。 すると、 f はベクトルではないが、grad f はベクトルになっていることに注意。 定理26 スカラー関数 f、g について、次の関係が成り立つ。 これまでの内容から、定理の証明はすぐに分かるであろう。念のため(1)と(5)の証明を与えるが、(2)~(4)の証明は省略する。 (1)の証明 (5)の証明 合成関数の微分を用いる。 定理27 位置ベクトルを p とし、その

  • 微分方程式を図解する

    物理では(実は物理によらず、いろいろな場面では)「微分方程式を解く」必要があることが多い。なぜなら、物理法則のほとんどが「微分形」で書かれているからである。「微分形で書かれている」というのは「微小変化と微小変化の関係式で書かれている」と言ってもよい。物理の主な分野における基礎方程式は、運動方程式 を初めとして、微分方程式だらけなのである。 微分方程式を解くには、積分という数学的技巧が必要になる。そのため「ややこしい」と嫌われる場合もあるようだ。 計算ではなく図形で「微分方程式を解いて関数を求める」というのはどういうことなのかを感じていただけたらと思い、アニメーションプログラムを作った。ただ計算するのではなく、「何を計算しているのか」をわかった上で計算のテクニックを学んだ方が理解は深まると思う。 ここでは微分方程式の中でも一番単純な「一階常微分方程式」を考える。「一階常微分方程式を解く」とは

  • 1