エントリーの編集
エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
生成AI(LLM)のハルシネーションの原因と対策を解説 : 新規事業のつくり方
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
生成AI(LLM)のハルシネーションの原因と対策を解説 : 新規事業のつくり方
生成AIは、時々間違った情報を作り出してしまうことがあります。これを「ハルシネーション」と呼びます... 生成AIは、時々間違った情報を作り出してしまうことがあります。これを「ハルシネーション」と呼びます。この記事では、ハルシネーションがどうして起こるのか、そしてそれを防ぐ方法を説明します。 ハルシネーションが起こる理由ハルシネーションは、大きく3つの原因で起こります。 1. LLMの学習データが原因LLMの学習データが、ハルシネーションの大きな原因になります。 誤情報の含有: LLMが学習するデータに古い情報や誤った情報が含まれている場合、モデルはその情報を学習し、誤った答えを生成することがあります。LLMはデータ内のパターンを学習するため、誤情報であってもそれを再現してしまう可能性があります。 知識の限界: LLMが学習するデータに特定分野の知識が十分に含まれていない場合、正確な答えを出せないことがあります。この場合、モデルは他の類似した情報に基づいて推測するため、誤った情報を生成するリス