タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

algorithmとnlpとprogrammingに関するhadzimmeのブックマーク (10)

  • クラスタリングの定番アルゴリズム「K-means法」をビジュアライズしてみた - てっく煮ブログ

    集合知プログラミング を読んでいたら、K-means 法(K平均法)の説明が出てきました。K-means 法はクラスタリングを行うための定番のアルゴリズムらしいです。存在は知っていたんだけどいまいちピンときていなかったので、動作を理解するためにサンプルを作ってみました。クリックすると1ステップずつ動かすことができます。クラスタの数や点の数を変更して、RESET を押すと好きなパラメータで試すことができます。こうやって1ステップずつ確認しながら動かしてみると、意外に単純な仕組みなのが実感できました。K-means 法とはK平均法 - Wikipedia に詳しく書いてあるけど、もうすこしザックリと書くとこんなイメージになります。各点にランダムにクラスタを割り当てるクラスタの重心を計算する。点のクラスタを、一番近い重心のクラスタに変更する変化がなければ終了。変化がある限りは 2. に戻る。これ

  • 「日本語テキストを分類するベイジアンフィルタ」を簡単につくるyo - download_takeshi’s diary

    数週間前の話になりますが、「はてブのリニューアル会見」の記事を読んでいたところ、はてブにも「自動カテゴライズによる記事分類」の機能が搭載されるとか。。。 同じようなタイミングで「似たようなモノ」というか「ほぼ同じようなモノ」を作っていたので、すごーくインスパイアされてしまいました。ジュワ〜。(アドレナリンの放出音) 数週間たってもいまだ興奮冷めやらぬ状態なので、今日はその件について書いてみようと思います。 Lingua::JA::Categorize - a Naive Bayes Classifier for Japanese document. http://search.cpan.org/~miki/Lingua-JA-Categorize-0.00001/ 「はてブのパクリ」ではありません。「ベイジアンによる日語テキスト分類器」を「簡単に作る」ことを目的としたモジュールです。 も

    「日本語テキストを分類するベイジアンフィルタ」を簡単につくるyo - download_takeshi’s diary
  • 新はてなブックマークでも使われてるComplement Naive Bayesを解説するよ - 射撃しつつ前転 改

    新はてブ正式リリース記念ということで。もうリリースから何週間も経っちゃったけど。 新はてなブックマークではブックマークエントリをカテゴリへと自動で分類しているが、このカテゴリ分類に使われているアルゴリズムはComplement Naive Bayesらしい。今日はこのアルゴリズムについて紹介してみる。 Complement Naive Bayesは2003年のICMLでJ. Rennieらが提案した手法である。ICMLというのは、機械学習に関する(たぶん)最難関の学会で、採択率はここ数年は30%を切っている。2003は119/371で、32.1%の採択率だったようだ。 Complement Naive Bayesの位置づけは 実装が簡単 学習時間が短い 性能もそこそこよい という感じで、2003年段階にあっても、絶対的な性能ではSVMに負けていた。しかし、学習が早いというのは実アプリケーシ

    新はてなブックマークでも使われてるComplement Naive Bayesを解説するよ - 射撃しつつ前転 改
  • ナイーブベイズによるテキスト分類体験アプリ - シリコンの谷のゾンビ

    もともとは研究室の新入生にNaive Bayesのイメージをつけるためにつくったもの.Naive Bayesを世の中に広めるために,きちんと公開することにしました. Text classification by Naive Bayes (2008-09-11追記)好評だったので日語を扱えるようにしました.詳しくはこちらの日記をご覧ください. Text classification by Naive Bayes ver.2 日語はじめました Naive Bayesナニソレ?という方はとりあえずググりましょう.理屈はわかったけれど,うまくイメージがつかないなぁ..という状態になったらプログラムを触ってみてください.すっきりします.たぶん. 使い方の説明 単語区切りが面倒なので日語は使えません.あしからず. 文を入れるっぽいところにテキストを入力します. クラスを選択して学習ボタンを押

    ナイーブベイズによるテキスト分類体験アプリ - シリコンの谷のゾンビ
  • ベイズを学びたい人におすすめのサイト - download_takeshi’s diary

    ベイジアンフィルタとかベイズ理論とかを勉強するにあたって、最初はなんだかよくわからないと思うので、 そんな人にお勧めのサイトを書き残しておきます。 @IT スパム対策の基技術解説(前編)綱引きに蛇口当てゲーム?!楽しく学ぶベイズフィルターの仕組み http://www.atmarkit.co.jp/fsecurity/special/107bayes/bayes01.html いくつかの絵でわかりやすく解説してあります。 自分がしるかぎり、最もわかりやすく親切に解説してる記事です。数学とかさっぱりわからない人はまずここから読み始めるといいでしょう。 茨城大学情報工学科の教授のページから http://jubilo.cis.ibaraki.ac.jp/~isemba/KAKURITU/221.pdf PDFですが、これもわかりやすくまとまってます。 初心者でも理解しやすいし例題がいくつかあ

    ベイズを学びたい人におすすめのサイト - download_takeshi’s diary
  • 自然言語処理は Python がいちばん - 武蔵野日記

    現在大学1年生の人で3年後には NAIST に (というか松研に) 来たいという人から「どんなプログラミング言語やっておくといいですか」と質問されたりするのだが、なかなか答えるのは難しい。自分は PerlPython がメインでときどき C++/C# を使ったりするのだが、どれが一番いいかはなんとも言えないので、自然言語処理以外に転向する可能性も考えると、C とか C++ とか Java とか(授業でそちらをやるのであれば)を最初の武器に選んだ方がいいのでは、と思ってはいる。 そんなこんなで最近 Hal Daume III (機械学習を用いた自然言語処理では非常に有名な人) のブログで Language of Choice というタイムリーなエントリーが出ていたので、紹介すると、「それなりに大きな自然言語処理のプロジェクトでどのプログラミング言語を使うのか」というアンケート結果が出

    自然言語処理は Python がいちばん - 武蔵野日記
  • Latent Semantic Indexing - naoyaのはてなダイアリー

    情報検索におけるベクトル空間モデルでは、文書をベクトルとみなして線形空間でそれを扱います。この文書ベクトルは、文書に含まれる単語の出現頻度などを成分に取ります。結果、以下のような単語文書行列 (term document matrix) が得られます。 d1 d2 d3 d4 Apple 3 0 0 0 Linux 0 1 0 1 MacOSX 2 0 0 0 Perl 0 1 0 0 Ruby 0 1 0 3 この単語文書行列に対して内積による類似度などの計算を行って、情報要求に適合する文書を探すのがベクトル空間モデルによる検索モデルです。 見ての通り、単語文書行列の次元数は索引語の総数です。文書が増えれば増えるほど次元は増加する傾向にあります。例えば索引語が100万語あって検索対象の文書が 1,000万件あると、100万次元 * 1,000万という大きさの行列を扱うことになりますが、単

    Latent Semantic Indexing - naoyaのはてなダイアリー
  • 大規模データ処理のための行列の低ランク近似 -- SVD から用例ベースの行列分解まで -- - 武蔵野日記

    id:naoya さんのLatent Semantic Indexing の記事に触発されて、ここ1週間ほどちょくちょく見ている行列の近似計算手法について書いてみる。ここでやりたいのは単語-文書行列(どの単語がどの文書に出てきたかの共起行列)や購入者-アイテム行列(どの人がどのを買ったかとか、推薦エンジンで使う行列)、ページ-リンク行列(どのページからどのページにリンクが出ているか、もしくはリンクをもらっているか。PageRank などページのランキングの計算に使う)、といったような行列を計算するとき、大規模行列だと計算量・記憶スペースともに膨大なので、事前にある程度計算しておけるのであれば、できるだけ小さくしておきたい(そして可能ならば精度も上げたい)、という手法である。 行列の圧縮には元の行列を A (m行n列)とすると A = USV^T というように3つに分解することが多いが、も

    大規模データ処理のための行列の低ランク近似 -- SVD から用例ベースの行列分解まで -- - 武蔵野日記
  • 情報検索ことはじめ〜教科書編〜 - シリコンの谷のゾンビ

    2011-01-18追記 教科書編その2 にて2011年版のIR教科書を紹介しています 情報検索(IR)の勉強を格的に始めて8ヶ月.大体どんな分野があって,どんなことを勉強すればいいのかわかってきた(と思う).この気持ちを忘れないうちにメモしておこう.以下,若輩があーだこーだ言ってるだけなので,間違いや他に情報があれば,ぜひコメントをお願いします. # ここで述べている情報検索とは,コンピュータサイエンスの一分野としての情報検索です.図書館情報学の側面は一切扱っていません,あしからず. というわけでまず教科書編. 腰を入れて勉強する場合,基礎づくりのためには教科書選びがいちばん重要だと思っている.自分の知っている限り,情報検索における教科書の選択肢はそれほど広くはない.以下に紹介するは,情報検索を学ぶ上で「買い」の.これらを読めば,最新の論文を読めるだけの土台はできるし,専門家と議

    情報検索ことはじめ〜教科書編〜 - シリコンの谷のゾンビ
  • お知らせ » 『機械はどれだけ人間に近づけるのか』 ~第2回 チームラボアルゴリズムコンテスト~ - チームラボ株式会社

    2009/02/05: 『機械はどれだけ人間に近づけるのか』 ~第2回 チームラボアルゴリズムコンテスト~ 『機械はどれだけ人間に近づけるのか』 ~第2回 チームラボアルゴリズムコンテスト~ 情報があふれてる。 人間の手で一つ一つ情報を見て取捨選択することは不可能だ。 もし人間の手に代わるロボットがいたら世の中がちょっと変わるかもしれない。 人間が持つ見えないルールや思考をプログラムで実現してみたいと思わないだろうか。 それはきっと使う者を感動させ、未来をわくわくさせるだろう。 我々チームラボも常にそこに挑戦し続けたいと思っている。 そこで純粋なこの思いを満たせる場をコンテストという形で提供し、プログラマーの皆さんを応援したいと思う。 このアルゴリズムコンテストは、機械はどれだけ人間に近づけるのかというお題を通して、皆さんが日ごろ持っているアイデアを、様々な要素技術(例えば、自然言語処理

  • 1