はじめに: 本講座は「機械学習ってなんか面倒くさそう」と感じている プログラマのためのものである。本講座では 「そもそも機械が『学習する』とはどういうことか?」 「なぜニューラルネットワークで学習できるのか?」といった 根本的な疑問に答えることから始める。 そのうえで「ニューラルネットワークでどのようなことが学習できるのか?」 という疑問に対する具体例として、物体認識や奥行き認識などの問題を扱う。 最終的には、機械学習のブラックボックス性を解消し、所詮は ニューラルネットワークもただのソフトウェアであり、 固有の長所と短所をもっていることを学ぶことが目的である。 なお、この講座では機械学習のソフトウェア的な原理を中心に説明しており、 理論的・数学的な基礎はそれほど厳密には説明しない。 使用環境は Python + PyTorch を使っているが、一度原理を理解してしまえば 環境や使用言語が
はじめに ポケモンについて何となく知っている人向けの記事です(デジモンは知らなくてOK) 3月ごろにポケモンたかさおじさんが集計したアンケートの分析をお手伝いしたところ、アンケートの自由記述回答の6353件中、155件もデジモンについて言及するコメントがあった。 「デジモンと区別付かないよね」 「もはやポケモンじゃない…。デジモン…。昔のデザインに戻ってほしいなぁ…。。。」 「主観ですが、伝説のポケモンが角張った印象で、デジモンのような印象を受ける。」 「全体的に毛がなさそうなツルッとしたフォルムの子達が増えた気がします。デジモンっぽい」 「デザインがごちゃごちゃしすぎて子供が描くのが難しい デジモンに近くなってきている」 「ダイパまでのデザインがポケモンっぽいデザイン。それ以降はデジモンみたいな雰囲気。」 私は幼少期からポケモンには触れてきたが、デジモンにはあまり縁がなかったため、 デジ
この1週間はGPT-3のユースケースの広さに驚かされる毎日でした. シリコンバレーでは話題騒然ですが日本ではほとんど話題になっていないので,勢いで書くことにしました. GPT-3はOpenAIが開発した言語生成モデルです.名前の由来であるGenerative Pretrained Transformerの通り,自然言語処理で広く使われるTransformerモデルを言語生成タスクで事前学習しています. 先月申請すれば誰でもGPT-3を利用できるOpenAI APIが発表され,様々な業種の開発者によって驚くべきデモンストレーションがいくつも公開されています. 特に話し言葉からJSXやReactのコードを生成するデモは著名なベンチャーキャピタルから注目を集め,誇大広告気味だと警鐘を鳴らす事態に発展しています. This is mind blowing. With GPT-3, I built
Provided with genre, artist, and lyrics as input, Jukebox outputs a new music sample produced from scratch. Below, we show some of our favorite samples. Automatic music generation dates back to more than half a century.[^reference-1][^reference-2][^reference-3][^reference-4] A prominent approach is to generate music symbolically in the form of a piano roll, which specifies the timing, pitch, veloc
Two of the questions we are most often asked are, “when will you add Japanese?” and “when will you add Chinese?” We are pleased to say, "今日!" Or, "今天!" The improvements in our neural network architecture that we made early this year have enabled us to achieve translation quality in Japanese and Chinese unlike anything we’ve seen before. To be sure the translations lived up to DeepL’s standards, we
回答 (5件中の1件目) ディープラーニングは昔ニューラルネット(神経回路網)と言われていました。 モデルとなった神経回路網において、神経の結合、処理状態がわかれば考えていることがわかるのか?と言われればそれは無理ですね。これはブラックボックスです。 じゃ、考えていることがわかるようなニューラルネットは作れるかと問われれば、できないと断言はできない。 ちなみに三十年くらい前のAIの主要トピックスは。 エキスパートシステム これは専門家の知識を記述するもので内容はわかります。 ファジーシステム どこ行ったんでしょうね? ニューラルネット でした。
最後にブログを書いてから1ヶ月が経ってしまいました。この期間の振り返りもしたいところですが、それはまた別の機会に。 今回はこの2週間くらいDeep Learningを使って画像を分類したりする遊びをしていましたのでそれについて。 まずは成果物から。 yuheinakasaka.github.io 画像をアップするとJuice=Juiceというハロプロのアイドルにどれだけ似てる顔なのかを判定できるサイトです(herokuの無料枠で動いてるのでサーバーはいともカンタンに死にます...😇)。 見せられるようなコードではないですが、一応ソースコードも置いておきます。 GitHub - YuheiNakasaka/yukanya: Juice=Juiceのメンバーを画像から判定する分類器 GitHub - YuheiNakasaka/yukanya-api GitHub - YuheiNakasa
「自分だけのキャラを作りたい」 AIで美少女を「無限生成」、若きオタクエンジニアの挑戦(1/4 ページ) 女の子の瞳、髪形、表情が変化し、何体ものキャラクターが生まれていく――Preferred Networksが深層学習を活用し、アニメキャラクターを自動生成するサービス「Crypko」(クリプコ)を提供している。開発したのは、中国出身の若きエンジニア。「自分の想像通りのキャラクターを形にできるサービスを作りたい」と意気込む2人に開発の舞台裏を聞いた。 女の子の瞳、髪形、表情が万華鏡のように目まぐるしく変化し、何体ものキャラクターが生まれていく――AI(人工知能)ベンチャーのPreferred Networks(PFN、東京都千代田区)が、アニメやゲームの制作会社向けにそんな技術の提供を始めた。深層学習(ディープラーニング)を活用してアニメキャラクターを自動生成するサービス「Crypko」
Dismiss Join GitHub today GitHub is home to over 50 million developers working together to host and review code, manage projects, and build software together. Sign up GitHub is where the world builds software Millions of developers and companies build, ship, and maintain their software on GitHub — the largest and most advanced development platform in the world.
Chainer チュートリアル 数学の基礎、プログラミング言語 Python の基礎から、機械学習・ディープラーニングの理論の基礎とコーディングまでを幅広く解説 ※Chainerの開発はメンテナンスモードに入りました。詳しくはこちらをご覧ください。 何から学ぶべきか迷わない ディープラーニングを学ぶには、大学で学ぶレベルの数学や Python によるプログラミングの知識に加えて、 Chainer のようなディープラーニングフレームワークの使い方まで、幅広い知識が必要となります。 本チュートリアルは、初学者によくある「まず何を学べば良いか」が分からない、 という問題を解決するために設計されました。 初学者は「まず何を」そして「次に何を」と迷うことなく、必要な知識を順番に学習できます。 前提知識から解説 このチュートリアルは、Chainer などのディープラーニングフレームワークを使ったプログ
cvpaper.challenge の Meta Study Group 発表スライド cvpaper.challenge はコンピュータビジョン分野の今を映し、トレンドを創り出す挑戦です。論文サマリ・アイディア考案・議論・実装・論文投稿に取り組み、凡ゆる知識を共有します。2019の目標「トップ会議30+本投稿」「2回以上のトップ会議網羅的サーベイ」 http://xpaperchallenge.org/cv/Read less
[Refresh for a random deep learning StyleGAN 2-generated (2019) anime face & GPT-3-generated anime plot; reloads every 18s. For many waifus simultaneously in a randomized grid, see "These Waifus Do Not Exist". This website's images are available for download. For interactive waifu generation, you can use Artbreeder which provides the StyleGAN 1 portrait model generation and editing, or use Sizigi
by rawpixel AI(人工知能)を用いた映像変換技術「Deepfake(ディープフェイク)」の文章版とも言うべきテキストジェネレーターを、イーロン・マスク氏らが出資する非営利のAI研究組織であるOpenAIが開発しました。しかし、あまりにも高精度のテキストを簡単に自動生成できるため、開発陣が「あまりにも危険過ぎる」と危惧しています。 New AI fake text generator may be too dangerous to release, say creators | Technology | The Guardian https://www.theguardian.com/technology/2019/feb/14/elon-musk-backed-ai-writes-convincing-news-fiction OpenAIが「GPT2」と呼ばれる新しいテキスト
アルファベット(グーグル)の人工知能(AI)専門子会社であるディープマインドが、新たな快挙を発表した。銀河戦争で人間を打ち負かしたのだ。 ディープマインドの最新学習アルゴリズムである「アルファスター(AlphaStar)」は、スタークラフト2のプロプレイヤーたちに初勝利を収めた。プロゲーマーのTLOとMaNaに対し、10勝1敗の対戦成績を挙げたのだ。この人気のリアルタイムの戦略ゲームでは、プレイヤーは3つの種族のうちの1つとして戦い、建物を建てたり、だだっ広い戦場で戦闘を繰り広げたりする。 アルファスターは、アルファスター・リーグと呼ばれる環境の中でゲームの仕方を学習した。最初に、大規模なニューラル・ネットワークが熟練者によるゲームの再現を観察した。その後、強化学習と呼ばれる機械学習の手法を使って、自らの分身を相手に戦うことで次第に腕を上げていく。ここで重要なのは、アルファスターのアクショ
原文記事: [阿尔法狗再下一城 | 蛋白结构预测AlphaFold大胜传统人类模型] (2018/12/03公開) 「研究したいタンパク質があるのだが、その構造と機能がわからない」 — これは分子細胞生物学の研究者が日々直面する最大の難題の一つである*a。アミノ酸配列測定技術が発展する中で、多くのタンパク質の配列がハイスループット*1に解析されているが、この配列決定の段階から実際に3次元構造を決定するまでの間には、未だに大きな距離がある。 生物の基本単位が細胞だとして、細胞の基本的な機能単位こそが、複雑多岐なタンパク質の1つ1つである。そしてまさにタンパク質の機能の本質を決定しているのが、タンパク質の構造である。タンパク質の機能を研究したり、それをターゲットとする薬剤を開発したいというとき、タンパク質の構造はとても重要な要素の一つになる。だからこそ、生物学には、構造生物学という学問領域まで
News¶ 2019/12/06: 講義資料Ver 1.1を公開(2019年度版) 2018/12/17: 講義資料Ver 1.0を公開(2018年度版) 本講義資料について¶ 本ページは 日本メディカルAI学会公認資格:メディカルAI専門コースのオンライン講義資料(以下本資料) です. 本講料を読むことで,医療で人工知能技術を使う際に最低限必要な知識や実践方法を学ぶことができます.本資料は全てGoogle Colaboratoryというサービスを用いて執筆されており,各章はJupyter notebook (iPython notebook)の形式(.ipynb)で以下のリポジトリにて配布されています(notebooksディレクトリ以下に全ての.ipynbファイルが入っています): japan-medical-ai/medical-ai-course-materials 想定受講者¶ 受
はじめに こんにちは。 機械学習エンジニアの辻です。 本記事はdely Advent Calendar 2018の22日目の記事です。 dely Advent Calendar 2018 - Adventar dely Advent Calendar 2018 - Qiita 昨日は弊社のサーバサイド・エンジニアの山野井が「【Vue.js】算出プロパティの仕組みについて調べてみた」という記事を書きました! とてもわかり易く解説しているので興味のある方は是非読んでみてください。 tech.dely.jp さて本日は「Lispの車窓から見た人工知能」と題しまして、プログラミング言語Lispから見た人工知能の風景を眺めていきたいと思っています。ぼくはEmacs使いのLisperですが、Lispを書くのは自分用のスクリプトや、Emacs Lispの設定変更といったものだけで、ふだんの機械学習に関す
あ、退職エントリとかではないです。雑多な駄文をお許しください。 2018年を振り返る 3月にカリフォルニア州パロアルトのラボに異動になって早くも3/4年が経ちました。 自分としてはまだ1年経ってないのかという感じです。もっと長く居るような気もするが、来たばかりのような感じもある。 生活には完全に慣れました。結局の所、生きていくだけなら "You need a bag?" に "No" だけ言えれば何とかなります。 家族のこと、子供のこと 家族が適応に苦しんでいます。特に子供は、8月からTKという公立小学校の下部組織に通っていますが、予想を遥かに超えて心を閉ざしたままです。 娘はとてもシャイで、思ったことが口にできません。非常に端的に言うと、生きる力が強くありません。象徴的なできごとが幾つかありました。 ある日、先生が陪審員の義務で代わりの先生が来た日、普段とは違う教室に預けられた。 お昼に
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く