タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

mathとwikipediaに関するkazutanakaのブックマーク (3)

  • ブラウワーの不動点定理 - Wikipedia

    1886年、アンリ・ポアンカレ(写真)はブラウワーの不動点定理と同値な結果を証明した。その正確な証明は、三次元の場合は1904年にピアース・ボウル(英語版)によって行われ、一般の場合は1910年にジャック・アダマールとライツェン・ブラウワーによって行われた。 ブラウワーの不動点定理(ブラウワーのふどうてんていり、英: Brouwer's fixed-point theorem)は、位相幾何学における不動点定理で、ライツェン・ブラウワーの名にちなむ。この定理では、コンパクト凸集合からそれ自身への任意の連続函数 f に対して、f(x0) = x0 を満たす点 x0、すなわち不動点が存在することが述べられている。ブラウワーの定理の最も簡単な形式のものは、実数直線内の閉区間 I あるいは閉円板 D からそれ自身への連続函数 f に対するものである。後者に対するより一般のものは、ユークリッド空間の凸

    ブラウワーの不動点定理 - Wikipedia
  • ベン図 - Wikipedia

    ベンにゆかりの深いケンブリッジ大学のゴンヴィル・アンド・キーズ・カレッジにはある、ベン図を描いたステンドグラス ベン図(ベンず、もしくはヴェン図、英: Venn diagram)とは、複数の集合の関係や、集合の範囲を視覚的に図式化したものである。イギリスの数学者ジョン・ベン (John Venn) によって考え出された。 ベン図はレオンハルト・オイラーによるオイラー図の特殊な場合に相当する。 概要[編集] 図1. オイラーによる部分集合の表し方 複数の集合を考える際には、各集合をひとつの閉曲線(例えば円)で表し、相関をその閉曲線の交わり方によって表すことができる。 例えば、オイラーは、集合 A が集合 B の部分集合であることを、図1のように表した。 図2. ベンによる部分集合の表し方 しかし、ベンは同じことを図2のように表した。黒で塗りつぶされた領域は、その領域に元が存在しないことを表す

    ベン図 - Wikipedia
    kazutanaka
    kazutanaka 2011/09/08
    楕円を用いた4つの集合のベン図
  • 0.999... - Wikipedia

    実数として "0.999…" と"1"は等しくなることを示すことができる(ただし、0.9999など途中で終了する小数は1と等しいと言えない)。この証明は、実数論の展開・背景にある仮定・歴史的文脈・対象となる聞き手などに応じて、多様な数学的厳密性に基づいた定式化がある[注釈 1]。 循環する無限小数一般に言えることだが、0.999… の末尾の … は省略記号であり、続く桁も 9 であることを示す。省略記号の前の 9 の個数はいくつでもよく、0.99999… のように書いてもよい。あるいは循環節を明確にするために 0.9、0.9、0.(9) などと表記される。 一般に、ある数を無限小数で表すことも有限小数で表すこともできる。稿で示されるように 0.999… と 1 は等価性であるから、例えば 8.32 は 8.31999… と書いても同じ数を表す。十進数を例に採ったが、数が一意に表示されない

    kazutanaka
    kazutanaka 2010/08/06
    区間縮小法の原理
  • 1