タグ

performanceとalgorithmに関するko-ya-maのブックマーク (2)

  • 様々なrate limitアルゴリズム - Carpe Diem

    概要 インターネットに晒されているWebサービスでは TV等で紹介されたことによる大量流入 悪意ある人物からの攻撃 クライアントのバグに依る大量リクエスト など、来想定していた以上のトラフィックが来ることはよくあります。 単純にシステムを構築すると大規模トラフィックに対応できずシステムがスローダウンしてしまうため、何かしらrate limitをかけておいた方が良いです。 ただしrate limitと一口に入っても色々あるため、今回は主なrate limitアルゴリズムを紹介します。 Leaky bucket Leaky bucketはデータ転送レートを一定にする(=上限を設定する)アルゴリズムです。 下の図のように、様々な流量の水流がそのバケツに流れ込んでも小さな穴からは一定の水流が流れ出す仕組みです。 ref: What is the difference between token

    様々なrate limitアルゴリズム - Carpe Diem
  • Goでスケールする実装を書く

    スケールする実装を書くためのガイド スケールするために 並列度とアムダールの法則 べき等参照透過性 Lock-FreeとWait-Free アトミックアクセス ロックの局所化 並列度とアムダールの法則 時間単位の場合は繰り返し処理のトータル時間に対し、 並列処理を妨げない処理時間の割合を「並列度」という。 (コードプロファイルを使って求める場合もあるが、 比較的単純なコードでないと計算が複雑になりやすい。) p 並列度 n 並列数 性能比 1/((1-p)+p/n) p=0.9のとき4倍の性能を得るにはn=6が必要。 n=5で4倍の性能を得るにはp=0.938が必要。 n=無限大とすると、性能比は以下の式におちつく。 理論上の性能向上限界 = 1/(1-p) 並列度90%の処理をどれだけ多数コアに分散しても理論上10倍処理効率が限界。 並列度95%の処理をどれだけ多数コアに分散しても理論上

  • 1