タグ

ブックマーク / echizen-tm.hatenadiary.org (6)

  • AdaGradよりもいけていると噂のオンライン学習器Adamを実装しました - EchizenBlog-Zwei

    AdaGradよりもいけていると噂のオンライン学習器Adamを実装しました。 実装がとても簡単で、ハイパーパラメータも論文に推奨値が書いてあるのが良いですね。 持っておかないといけないパラメータの数は(たぶん)AdaGradと同じです。 https://github.com/echizentm/Adam AdaGradやAdamのようなオンライン学習器は実装が簡単、省メモリなど優れた特徴があり大変実用的ですし、そろそろ有益な書物も発売されるようなので、気になった方はこれを機に学んでみると良いですよ。 しかしこうなるとAdamを改良したEveという学習器を作ってみたいですね(作るとは言っていない)。

    AdaGradよりもいけていると噂のオンライン学習器Adamを実装しました - EchizenBlog-Zwei
  • SVMツールと関連する論文まとめ - EchizenBlog-Zwei

    最近SVM(Support Vector Machine)周りの復習をしているので有名どころのツールと、それに関連する論文をまとめた。完全に個人用メモなので抜けがあるかも。あくまで参考程度に。 ツールは色々あるけれど使うのが目的なら定番のsvmlightやlibsvmがいい気がする。最近だとliblinearが流行っている。SVMといえばカーネル関数とマージン最大化だけれど、最近ではカーネルは線形でいいやという流れになってきている?個人的にはpegasosがわかり易い線形カーネル+オンライン学習になっていて自分で作って遊ぶには良いと思っている。またsvmsgdは"straightforward stochastic gradient descent"と言っているものの非常に高性能で、それを実現するための様々な工夫が施されていて実装を学ぶ上で大変参考になる。ここには挙げていないけれど、線形カ

    SVMツールと関連する論文まとめ - EchizenBlog-Zwei
  • これからはじめる人のための機械学習の教科書まとめ - EchizenBlog-Zwei

    最近では企業における機械学習の認知度も高まっていてエンジニアの求人募集でも「望ましいスキル:機械学習」というのをよく見かける。特にweb系の企業だと当たり前のように機械学習を活用した魅力的なサービスが生み出されているようだ。 そんなわけで先日書いた機械学習の入門記事もそれなりに好評で末尾の教科書リストも結構参考にしていただいた様子。ということで、これから機械学習をはじめる人のためにオススメの教科書を10冊ほどピックアップしてみた。 幸いにして機械学習の分野には良書が多い。5年前はナイーブベイズすら知らなかった私も、これらの教科書のおかげでなんとか機械学習を使えるようになりました!(個人の体験談です。効果には個人差があります) 参考: 機械学習超入門 〜そろそろナイーブベイズについてひとこと言っておくか〜 - EchizenBlog-Zwei 最初に既存の機械学習の教科書まとめを挙げておくの

    これからはじめる人のための機械学習の教科書まとめ - EchizenBlog-Zwei
  • 自然言語処理を活用したwebサービスをつくるときに参考になる5冊の書籍 - EchizenBlog-Zwei

    自然言語処理を活用したwebサービス開発に関わって5年以上経った。いい機会なのでこれまでを振り返って役に立ったと思う5冊をメモしておく。 1.珠玉のプログラミング―質を見抜いたアルゴリズムとデータ構造 まずはこれ。有名ななので知っている人も多いと思う。簡単に説明するとちょっと前に「フェルミ推定」という名前で流行ったような、データから必要な数値を概算する方法や、問題が起きたときに問題点がどこにあるのか?最小の労力で解決するにはどこをいじればよいのか?などが書いてある。「webサービスで自然言語処理だ!」というと無限に夢が広がりがちなので、どういうデータが使えるのか、それをどういう形にもっていけばイケてるサービスになるのか、それはどのくらいの期間で実現できるか、ということを考える必要がある。そういうわけで書は真っ先に読むべき一冊なのでは(余談だけれど、以前M << Nなデータに対してO(

    自然言語処理を活用したwebサービスをつくるときに参考になる5冊の書籍 - EchizenBlog-Zwei
  • 機械学習超入門III 〜機械学習の基礎、パーセプトロンを30分で作って学ぶ〜 - EchizenBlog-Zwei

    機械学習には大きく分けて「識別関数」「識別モデル」「生成モデル」の3つの種類がある。このなかで識別関数は確率を使わないので初心者が入門するのに最適。 識別関数で有名なのはSVM(Support Vector Machine、サポートベクターマシン)。名前を聞いたことがある人も多いと思う。そこで早速SVMを学ぼうとすると敷居が高くて挫折しがち。 実はSVMは(大雑把に言うと)パーセプトロンという基礎的な識別関数に「マージン最大化」と「カーネル関数」という考え方を導入したもの。なので機械学習入門者は最初にパーセプトロンを学ぶのが良いと思われる。 そこで早速パーセプトロンを作ってみよう!というのが記事の意図するところ。自分で実装できるとモチベーションが維持しやすいので、詳しく理論を学ぶ前にまずは作ってみようという考え。ちなみに実装にはperlを用いた。 参考: これからはじめる人のための機械学

    機械学習超入門III 〜機械学習の基礎、パーセプトロンを30分で作って学ぶ〜 - EchizenBlog-Zwei
  • 機械学習超入門IV 〜SVM(サポートベクターマシン)だって30分で作れちゃう☆〜 - EchizenBlog-Zwei

    ニーズがあるのかさっぱりわからない機械学習超入門だけどひっそり続けていきたい。 前回は識別関数の基礎であるパーセプトロンの簡単な説明とPerlによる実装を解説した。実はこの時点でかの有名なSVM(Support Vector Machine、サポートベクターマシン)もほぼ完成していたのだ!というわけで今回はSVMをPerlで作ってしまうお話。 参考: これからはじめる人のための機械学習の教科書まとめ - EchizenBlog-Zwei 機械学習超入門 〜そろそろナイーブベイズについてひとこと言っておくか〜 - EchizenBlog-Zwei 機械学習超入門II 〜Gmailの優先トレイでも使っているPA法を30分で習得しよう!〜 - EchizenBlog-Zwei 機械学習超入門III 〜機械学習の基礎、パーセプトロンを30分で作って学ぶ〜 - EchizenBlog-Zwei さて

    機械学習超入門IV 〜SVM(サポートベクターマシン)だって30分で作れちゃう☆〜 - EchizenBlog-Zwei
  • 1