タグ

ブックマーク / note.com/dd_techblog (2)

  • 時系列性を考慮した因果探索手法VAR-LiNGAMの紹介|Dentsu Digital Tech Blog

    電通デジタルでデータサイエンティストをしている中嶋です。 この記事では、これまで紹介したLiNGAMの派生形であるVAR-LiNGAM(Vector AutoRegression-LiNGAM)について紹介したいと思います。これは通常のLiNGAMにベクトル自己回帰モデル(Vector AutoRegression Model: VAR Model)の考え方を取り入れ、時系列性の因果も考慮した因果探索を行うものです。 今回の記事では分量の関係からGoogle Colabでの実装は割愛し、元論文[1]を参考にしながら主に理論的な部分の紹介を行います。 定式化VAR-LiNGAMの定式化を説明する前に論文の形式に倣ってまずはLiNGAMとVARそれぞれの定式化をおさらいします。個別の説明に入る前に全体像を以下に示します。 LiNGAM LiNGAMとはLinear Non-Gaussian A

    時系列性を考慮した因果探索手法VAR-LiNGAMの紹介|Dentsu Digital Tech Blog
  • Google Colabで統計的因果探索手法LiNGAMを動かしてみた|Dentsu Digital Tech Blog

    電通デジタルでデータサイエンティストをしている中嶋です。 前回の記事は「Airflow 2.0でDAG定義をよりシンプルに!TaskFlow APIの紹介」でした。 Advent Calendar 10日目となる記事では因果探索の一手法であるLiNGAM(Linear Non-Gaussian Acyclic Model)の解説及び、Google Colabでの分析例について紹介します。 因果探索とは最近のトレンド 最近、広告配信やマーケティング分析の文脈で施策の効果を適切に評価する手法として実験計画法や因果推論が注目を浴びています。産業界でも株式会社ソニーコンピュータサイエンス研究所、クウジット株式会社、株式会社電通国際情報サービスの三社が提供するCALCという要因分析ツールや、最近はNECの因果分析ソリューション causal analysisも出ていたりと盛り上がりを見せています。

    Google Colabで統計的因果探索手法LiNGAMを動かしてみた|Dentsu Digital Tech Blog
  • 1