にゃーにゃー、ではなくてw。情報学類(今名前変わったんだっけか)のほうで出ている自然言語処理の講義ほうで、形態素解析をするための「wikipedia:ビタビアルゴリズム(Viterbi algorithm)」というのを勉強しました(GWの前くらいに)。なんか全然分かっていなかったので、書いてみることにしました。アルゴリズムの種類としては動的計画法(Dynamic Programming)に入るので、アルゴリズムデザインのほうの勉強にもなるし(という合理化)。 「猫はうろうろ」という文字列は「猫、はう、ろう、ろ」や「猫、は、うろうろ」など様々な形で形態素解析することができます。これをある基準で分解したいのですが、ここでは一番単純そうな単語数最小法と呼ばれる方法でやります。 このやり方で「猫はうろうろ」と「家におくりました」を形態素解析すると結果は次のようになります。 /tmp% ruby v
About Stanford NER is a Java implementation of a Named Entity Recognizer. Named Entity Recognition (NER) labels sequences of words in a text which are the names of things, such as person and company names, or gene and protein names. It comes with well-engineered feature extractors for Named Entity Recognition, and many options for defining feature extractors. Included with the download are good na
(データベースシステムとその研究の世界を一般の人にわかりやすく伝えるため、「図書館」をモデルにした話を書いてみました。試験に出そうな(?)部分は太字で強調してあります。) 「データベース」という言葉は、データの集まりという意味です。データベースシステムの研究では、例えて言うなら「欲しい本がすぐに見つかる図書館」をいかに作るかという問題を考えます。ここで「データ」は図書館の「本」に相当し、「ハードディスク」は「本棚」がたくさん収められている図書館の建物だと考えてください。 「欲しい本がすぐに見つかる」とはどういうことでしょうか?例えば、図書目録を調べて目的の本棚の番号がわかったとしても、本棚までの距離が遠ければがっかりしてしまいますよね?(高すぎて手が届かない、とか泣けてきます)
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く