無料 BGM・効果音のフリー音源素材 誰でも 報告不要で 商用利用無料! 今すぐ使える BGM・効果音 1,000点以上! 動画制作やイベントに もちろんスプリンギン アプリでも利用可

概要 ノートブック 実行方法 入力フォルダの準備 ノートブックの実行:1.初期セットアップ ノートブックの実行:2.設定 ノートブックの実行:3.実行 まとめ 追記 2022.05.02 2022.04.30 概要 前回、Google Cloud PlatformのCompute Engineを用いたNDLOCRアプリの実行方法を共有しました。 nakamura196.hatenablog.com ただし、上記の方法は手続きが一部面倒で、かつ費用がかかる方法です。本番環境で使用するには適した方法ですが、小規模に、または試験的に使用するにはハードルが高い方法でした。 この課題に対して、 @blue0620 さんがGoogle Colabを用いたNDLOCRアプリの実行方法を作成されました。 https://twitter.com/blue0620/status/151929433215901
2022年04月25日 NDLラボのGitHubから、次の2件を公開しました。ライセンスや詳細については、各リポジトリのREADMEをご参照ください。 NDLOCR 国立国会図書館(以下、「当館」とします。)が令和3年度に株式会社モルフォAIソリューションズに委託して実施したOCR処理プログラムの研究開発事業の成果である、日本語のOCR処理プログラムです。 このプログラムは、国立国会図書館がCC BY 4.0ライセンスで公開するものです。なお、既存のライブラリ等を利用している部分については寛容型オープンライセンスのものを採用しているため、商用非商用を問わず自由な改変、利用が可能です。 機能ごとに7つのリポジトリに分かれていますが、下記リポジトリの手順に従うことで、Dockerコンテナとして構築・利用することができます。 リポジトリ : https://github.com/ndl-lab/
はじめに 色々ありましたが,初心に立ち返って,弁護士業務の解説をしようと思いまして,このテーマを取り上げました。 標題の「登記情報提供サービス」と「登記簿図書館」について語ります。 あちこちで布教しているのですが,あまり広がっているように思えません。 そこで,皆さんにご紹介するために筆を執りました。なお,私には本記事を執筆したことにより一銭も入りませんのでどうぞご安心ください。べ,別に泣いてないのでどうぞご安心ください。 登記情報提供サービス 概説 電気通信回線による登記情報の提供に関する法律(平成11年法律第226号)の第4条第1項の業務を行う者(指定法人)に指定されているのが「一般財団法人民事法務協会」で,その「一般財団法人民事法務協会」が運営しているのが「登記情報提供サービス」です。 www1.touki.or.jp ざっくりと言うと,不動産登記,商業登記,動産・債権譲渡登記をネット
特許・契約書・有価証券報告書・企業関連ニュースなど、実応用上の自然言語処理では、会社名を認識したいという場面に非常に多く出くわす。 会社名らしい文字列をテキストから抽出することは、形態素解析器の辞書を用いたり固有表現抽出モデルを学習することである程度実現される一方で、抽出した会社名をレコード化して分析などに用いる際には、いわゆる名寄せの問題が発生する。 自然言語処理における名寄せに似た問題は、エンティティリンキングや共参照解析といったアプローチで探求されており、実応用上は前者のアプローチが採られることが多い印象がある。*1 名寄せタスクをエンティティリンキング的に解くためには、帰着先の知識ベース・辞書が予め存在していることが必要だが、研究の文脈では知識ベースとしてWikipediaが採用されることが多い。 Wikipediaを用いる利点は多くあり、様々なエンティティ種に対してそこそこのカバ
UPDATE (February 27, 2020): I thank everyone for the interest, questions and suggestions during ScaledML 2020 poster session. The poster PDF is available for download here. In the coming days I will be updating this blog post with the most recent version of the k8s manifests we use for training. At Rosebud AI we invent new tools for authoring and editing visual content. We combine established comp
はじめに ダミーデータを作成しなければならないときってありますよね? テストデータやサンプル画面を作るときに値をどうするか困ったことありませんか? そういった悩みを VS Code で解決するための拡張機能が vscode-random です。 https://marketplace.visualstudio.com/items?itemName=jrebocho.vscode-random デモ (GitHub リポジトリより引用) 拡張機能としてはカーソル位置にランダムな値を挿入するという単純なものなのですが、VS Code のマルチカーソル機能と組み合わせることで非常に強力な体験を得ることができます。 名前やメールアドレスの項目がある JSON や YAML に対し、複数の項目にまとめて値を挿入して作り上げるのは気持ちいいこと間違いなし! 対応コマンド コマンド 説明 生成例
OpenAIが発表した言語モデルGPT-3はパフォーマンスの高さから各方面で注目されており、ついにはMicrosoftが学習済みモデルの利用を独占化しました。 私個人の所感としてこれまで学習済みモデルは無料公開するという流れを無視し、(アーキテクチャではなく)学習済みモデルが商品化するのはAIビジネスの一つの転換期と感じています。 深層学習による自然言語処理分野で巨大化していくモデルを十分に学習させるためにはWebデータの活用が大きな役割を果たしています。一方、その量に関する話題はあるものの、利用にあたっての細かな前処理に関する議論はあまりなされていない印象です。 そこで本記事は学習データの構築にフォーカスします。 GPT-3の論文でも言及されている通り、学習データはGoogle Researchが発表したT5のデータを踏襲したと書かれていますので、まずはT5のデータから見て行きましょう。
This corpus consists of Japanese text (transcripts) and multi-speaker voice data. The specification is as follows. 100 professional speakers Each speaker utters: "parallel100" ... 100 reading-style utterances that are common among speakers "nonpara30" ... 30 reading-style utterances that are completely different among speakers "whisper10" ... 10 whispered utterances "falsetto10" ... 10 falsetto ut
著者の声を録画・録音して声を変換し元の映像と組み合わせてみた映像です。 このときの変換元の音声は撮影用のスマートフォンで録音しており、部屋の残響が含まれるなど声が少し不鮮明になる収録環境ですが、それでもしっかり声変換できていることがわかると思います。 概要Dwango Media Villageの廣芝です。誰の声でも狙った複数の人の声に変えることができる声変換システムを開発し、実際に声を変えることができるデモページを公開しました。この記事では、声変換技術を研究開発する際に取り組んだ課題について紹介します。 声変換声の変換技術には、リアルタイム性と品質のトレードオフがあります。既存の声変換システムはリアルタイム性を重視する傾向がある一方、品質を重視したものはあまり見かけません。品質を優先した声変換システムがあると応用の幅が広がると思い、研究開発に挑戦しました。 声変換を含む音声合成の品質は、
3つの要点 ✔️ Data augmentationによく用いられる反転に新しい概念を提唱 ✔️ 人間では気づかなかった左右反転を認識 ✔️ この性質を元にした拡張で、さらなる精度向上が期待できる Visual Chirality written by Zhiqiu Lin, Jin Sun, Abe Davis, Noah Snavely (Submitted on 16 Jun 2020) Comments: Published by CVPR2020 Subjects: Computer Vision and Pattern Recognition (cs.CV) はじめに 左右反転によるData augmentationは物凄く当たり前なデータ拡張手法であり、特に気にすることなく今まで使用してきた人もいるのではないでしょうか。私も今回の論文を読むまでは結構当たり前のように使っていま
Amazon Web Services ブログ AWS COVID-19 パブリックデータレイクの探索 AWS COVID-19 のデータレイク — 新型コロナウイルス (SARS-CoV-2) とこれに関連する病気である COVID-19 の広がりおよび特性についての、またはそれに関する最新のデータセットが収集され、一元化されたリポジトリが現在利用可能になりました。詳細については、COVID-19 データの分析用のパブリックデータレイクをご参照ください。世界的には、このデータを収集するためにいくつかの取り組みが進行中であり、AWS はパートナーと協力して、この重要なデータを自由に利用できる状態にし、最新の状態に保てるように尽力しています。 このデータは、質問、独自のデータセットとの混合、独自のデータレイクへの新しい洞察の取り込みを行うためにすぐに利用できます。AWS は、パンデミック監視
AIを勉強している皆さんこんにちは。 皆さんはFairnessを知っていますか? FairnessはAIの分野の一つで、近年とても注目されています。そこで、A Survey on Bias and Fairness in Machine LearningというFairnessのサーベイ論文を軸にしてFairnessの入門記事を書くことにしました。 2011年から2017年までのFairnessの論文数 引用元: https://towardsdatascience.com/a-tutorial-on-fairness-in-machine-learning-3ff8ba1040cb Fairness(公平)とは AIにおけるFairnessという分野とは、「AIの判断を出来るだけ公平なものにしよう。」という分野です。公平なAIとは何でしょうか。例えば、人間に関する情報を入力とし、その人間が
by Nicole Honeywill 自然言語処理のアルゴリズムは言葉の順序や構造の理解を不得意としてきました。この課題を克服すべく、Googleが新たにデータセットを公開。このデータセットで訓練を行うと、機械学習モデルのテキスト分類精度が50%から80%にまで向上するとのことです。 Google AI Blog: Releasing PAWS and PAWS-X: Two New Datasets to Improve Natural Language Understanding Models https://ai.googleblog.com/2019/10/releasing-paws-and-paws-x-two-new.html Googleは機械翻訳や音声認識で自然言語処理を取り入れていますが、自然言語処理では最先端のアルゴリズムでも「ニューヨークからフロリダへのフライト」
MultiFC: A Real-World Multi-Domain Dataset for Evidence-Based Fact Checking of Claims Abstract We contribute the largest publicly available dataset of naturally occurring factual claims for the purpose of automatic claim verification. It is collected from 26 fact checking websites in English, paired with textual sources and rich metadata, and labelled for veracity by human expert journalists. We p
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く