タグ

関連タグで絞り込む (217)

タグの絞り込みを解除

sqlに関するmanabouのブックマーク (177)

  • Text-to-SQLのコモディティ化とデータ活用の民主化 - satoshihirose.log

    はじめに データ活用と生成AI 構造化されたデータと生成AI 事例 Uber LinkedIn Pinterest さいごに はじめに ikki-sanのデータ活用の民主化へのコメントをそうだなと思いながら読んで、最近自分もそんな感じの領域のことをベンダー所属のプロダクトマネージャーとしてやっているので、考えていることをまとめてみる。 この数年間で「データの民主化」はイマイチ進まなかった印象ですが、その原因は「SQLの習得難易度」によるところが大きい。そこに関しては生成AIで相当解決されるはずなので、今後はデータの民主化がスタンダードになると予想しています。— ikki / stable代表 (@ikki_mz) 2025年4月7日 データ活用と生成AI これまで社内に蓄積された構造化されたデータを取得・操作するにはSQLおよびデータベースの理解が必要であり、その理解がない人たちは誰かにデ

    Text-to-SQLのコモディティ化とデータ活用の民主化 - satoshihirose.log
  • なぜ DuckDB を採用したのか

    概要 なぜ 自社 で DuckDB を採用したのかを、雑に書いていきます。 変更履歴 2025-03-12: DuckDB の開発体制と Zstandard で圧縮されたファイルの読み込みについて追記 2025-02-13: 今後やりたい事 v2 を追記 まとめ DuckDB / DuckDB-Wasm を利用する事で中小規模のサービスであれば、ログ解析や統計情報の可視化を低コストで提供することができる DuckDBgo-duckdb 経由で利用する事で、HTTP リクエスト単位での DuckDB を利用できる DuckDB-Wasm と OPFS を利用する事で、クライアント側での統計情報のため込みができるようになる 解決したい課題 解決したい課題は基的にサービスの運用費を抑えるということです。中小規模のサービスでは運用費が大きな課題になります。 自社パッケージ向けのログ解析ツー

    なぜ DuckDB を採用したのか
  • GitHub - DhruvAtreja/datavisualization_langgraph: Questions? Contact me at @DhruvAtreja1

  • データベース自作勉強会・輪実装会のススメ - エムスリーテックブログ

    先日、社内有志で開催していたDB自作 Database Design and Implementation の輪読会ならぬ輪実装会がついに完結を迎えました。 RDBMSをゼロから、毎週一人ずつ、1章分を実装してPullRequestを出しつつ資料も準備して発表をこなすという一見ハードな勉強会で、完走できるか不安もありつつスタートしましたが、やってみるとめちゃくちゃ楽しく最後まで完走できました。 記事ではみなさんに「うちでもやってみたい」と思ってもらえることを願って、読んだ推しポイントや、どのように勉強会を進めたかを紹介したいと思います。 感動で涙の出るコード Part1: おすすめポイント が良い みんなでワイワイやるのが良い 3ヶ月で完走できるのがいい 完走後のモチベーションアップが良い Part2: 輪実装会 募集 参加者 進め方・実装 期間 Part3: おれたちのDB実装

    データベース自作勉強会・輪実装会のススメ - エムスリーテックブログ
  • 「みんなさぁ、データベースって何で学んだ?」単なるSQLやテーブル設計のいろはとかではなく『データベース』そのものの勉強についての質問に有益な情報が集まる

    𝕏 𝕃(おおきなえる)🌸🐻💿⚒️ @ellnore_pad_267 みんなさぁ・・・ データベースって何で学んだ? あんま学ぶチャンスなくね? そんなことはないか? 単なる SQL やテーブル設計のいろはとかではなく『データベース』そのものの勉強な。 オプティマイザとかその辺の細かい部分の話。 2024-09-09 20:18:38 𝕏 𝕃(おおきなえる)🌸🐻💿⚒️ @ellnore_pad_267 > 単なる SQL やテーブル設計のいろはとかではなく『データベース』そのものの勉強な。 オプティマイザとかその辺の細かい部分の話。 この部分読めてない奴が一定数おる???? 2024-09-10 10:12:46

    「みんなさぁ、データベースって何で学んだ?」単なるSQLやテーブル設計のいろはとかではなく『データベース』そのものの勉強についての質問に有益な情報が集まる
  • もう人間がクエリを書く時代じゃない!SQLクエリの組み立てを自動化するSlack botを開発・導入しました - Pepabo Tech Portal

    こんにちは。SUZURI事業部の@kromiiiと申します。 私のメインの業務はWebアプリケーションの開発ですが、大学院時代のスキルを活かして並行してデータ分析業務も行っています。 データ分析業務ではデータベースのクエリを書くことが多いのですが、私自身SUZURI事業部に配属されたばかりで、テーブルの名前やリレーションを覚えるのが大変でした。そこでクエリの設計を自動化するツールをSlackに導入しました。 その名も tbls-ask bot です。どのようなものか先に見てみましょう。 ユーザーはSlackでメンションする形で、どのようなクエリを実行したいのか自然言語で入力します。 メンションされるとSlack botが起動し、どのDBスキーマを利用するかを尋ねます。 ユーザーがDBスキーマを選択すると、自然言語からSQLクエリを生成し、Slackに返答します。 今回はパブリックに公開する

    もう人間がクエリを書く時代じゃない!SQLクエリの組み立てを自動化するSlack botを開発・導入しました - Pepabo Tech Portal
  • データ分析のためのSQLを書けるようになるために

    はじめに 稿では分析用クエリをスラスラ書けるようになるまでの勉強方法や書き方のコツをまとめてみました。具体的には、自分がクエリを書けるようになるまでに利用した教材と、普段クエリを書く際に意識していることを言語化しています。 想定読者として、SQLをガンガン書く予定の新卒のデータアナリスト/データサイエンティストを想定しています。 勉強方法 基礎の基礎をサッと座学で勉強してから、実践教材で実際にクエリを書くのが望ましいです。 実務で使える分析クエリを書けるようになるためには、実務経験を積むのが一番良いですが、だからといって座学を御座なりにして良いというわけではありません。SQLに自信がない人は、一度基礎に立ち返って文法の理解度を確認した方が良いと思います。 書籍 SQL 第2版: ゼロからはじめるデータベース操作 前提として、SQLに関する書籍の多くがデータベース運用/構築に関する書籍がほ

    データ分析のためのSQLを書けるようになるために
  • インデックスを理解したい - Qiita

    はじめに みなさんはDBのインデックスを正しく使えていますか? 私はなんとなく「DBのパフォーマンスを向上するためのもの」という認識はあったのですが、 どのような場面で使うものなのか、逆にどのような場面では使うべきでないのかなど 明確に理解できていませんでした。 今回はそんなインデックスについての理解を深めたいと思います。 インデックスとは インデックスとは、その名の通り「索引」です。 表現の仕方と変えると、(x, a)という形式の配列であるとも言えます。 xというキー値とそれに結びつくaというデータ情報があり、 これを利用することですべてのデータを網羅して見ることなく、 まさにの索引のように目的のデータにたどり着くことができます。 インデックスはSQLのパフォーマンスを改善するための非常にポピュラーな手段であり、 理由としては下記の3点が挙げられます。 アプリケーションのコードに影響を

    インデックスを理解したい - Qiita
  • リレーショナル・データベースの世界

    序文 私の仕事は、DBエンジニアです。といっても別に望んでデータベースの世界へきたわけではなく、当初、私はこの分野が面白くありませんでした。「Web系は花形、データベースは日陰」という言葉も囁かれていました。今でも囁かれているかもしれません。 ですが、しばらくデータベースを触っているうちに、私はこの世界にとても興味深いテーマが多くあることを知りました。なぜもっと早く気づかなかったのか、後悔することしきりです。 もちろん、自分の不明が最大の原因ですが、この世界に足を踏み入れた当時、先生も、導きの書となる入門書もなかったことも事実です。 今でこそバイブルと仰ぐ『プログラマのためのSQL 第2版』も新入社員には敷居が高すぎました (2015年2月追記:その後、自分で第4版を訳出できたのだから、 人生は何があるか分からないものです)。 そこで、です。このサイトの目的は、データベースの世界に足を踏み

  • データベースを勉強したいあなたに送る技術書17冊(+11冊1講義7link)

    これはなに ども、レバテック開発部のもりたです。最近めっちゃ元気!! 今回は『データベースについて勉強したいあなたに送る技術書17冊(+11冊1講義7link)』として、もりたがここ半年くらいでわーっと集めたデータベース周りの書籍(とか)を紹介していきます。アプリケーションって結局はデータベースみたいなところがあると思うんですが、おれは長いことデータベースをどう学んだら良いのか分かりませんでした。同じような気持ちを抱えているITエンジニアの人もいると思うので、学習ロードマップと合わせて紹介していきます。 なお具体的な対象読者は業務でなんとなくSQL書いてるけど、ウィンドウ関数とか言われると分からんな……くらいの人です。 扱う領域と扱わない領域 扱う領域としてはだいたい以下 再入門 SQL 内部構造 論理設計 周辺知識 データベース理論 その他高度なもの モデリング、NoSQL、分散データ

    データベースを勉強したいあなたに送る技術書17冊(+11冊1講義7link)
  • 実践Immutable Data Model - 紙箱

    ランキング参加中プログラミング はじめに この記事では、Immutable Data Modelと呼ばれる設計手法をもとに、リレーショナル・データベースにおける、テーブル設計の話を書いています。また、今回の実践で利用する、別の考え方の背景を理解するために、Out of the tar pitという小論文の内容にも言及します。 「状態とは何か?」というややこしい話がたくさん出てきますし、データベースのテーブル設計についての話であることから、たくさんのSQLが出てきます。なので、データモデリングとか状態管理とか、特にSQLとかに興味がない人には面白くないと思います。 そのあたりに興味ある方は、読んでみて欲しいです。 Immutable Data Modelを、実際のアプリケーションで使うデータベースに採用するにあたり、どういう考え方で、どのようにテーブルを構成したか、自分なりの経験を書いていま

    実践Immutable Data Model - 紙箱
  • xlsxファイルにSQLを実行するxlsxsql - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article?

    xlsxファイルにSQLを実行するxlsxsql - Qiita
  • SQLの実行計画の読み方 |

    今回は、SQLを書く上で特にパフォーマンスに影響のあるSQLの実行計画の読み方について解説します。実行計画はデータベース製品によってさまざまに差異がありますが、ここでは比較的どのデータベース製品でも共通する内容について解説します。 実行計画とは記述したSQLが実際にデータベースの内部でどのように処理されて結果を返すか、その処理方法を記述した情報です。 A5:SQL Mk-2では、SQLエディタで実行計画を見たい SQL の上にキャレットがある状態でメニューから [SQL(S)] – [SQLの実行計画(J)] または、Ctrl+E で表示できます。 表示の仕方はデータベース製品ごとに異なりますが、多くのデータベース製品ではツリー状の情報として表現されます。(このため A5:SQL Mk-2でもツリービューで実行計画を表示します。) ツリーのリーフ(端)から処理が行われ、ルート(根)に向かっ

  • GitHub - hikarut/SQL-Hands-on

  • 『データ分析のためのSQL勉強会〜初級編〜』資料公開|高橋 光 | 著書『データ分析力を高める ビジネスパーソンのためのSQL入門』

    このでは、無料で公開しているnoteの内容をさらに丁寧に分かりやすく、体系化させてアップデートした内容となっています。 noteの内容を立ち読みだと思ってもらい、より丁寧に学びたい場合は是非書籍を読んでもらえると嬉しいですmm これからSQLを学びたいと思っている方向けに作成したSQL勉強会の資料を公開します!(以下の方向けの勉強会資料です) SQLをこれから学びたい人 仕事SQLを触り始めたけどイマイチよくわからない人 データ集計やデータ分析をエクセル使ってやってる人 資料こちらから最新の資料をダウンロードして下さい。 (※「Source code (zip)」からダウンロードして下さい) 資料の構成は以下の通りです。 docs PDF資料 演習問題など含めて全部で約200ページくらいあります data ハンズオン用テストデータ csvファイル3つ script ハンズオン用テストデ

    『データ分析のためのSQL勉強会〜初級編〜』資料公開|高橋 光 | 著書『データ分析力を高める ビジネスパーソンのためのSQL入門』
  • オレ的EXPLAIN技を語っちゃうゾ - Qiita

    メリークリスマス 記事はPostgreSQL Advent Calendar 2021の25日目です。今年も面白い記事がたくさん揃いましたね!!! さて、みなさん今年のPostgreSQLライフはどんな感じでしたでしょうか? 私はというと、なんだかチューニングばっかりやってました。1案件でいろいろお手伝いすることはまあまああったのですが、複数から次々チューニングの相談をもらって、歴代継承者の個性を発現したデクくんのごとく駆け回ったのが今年のハイライトです。 (この綱渡り感、、、伝われ!!!) 俺たちは雰囲気でチューニングしている 今回上手くいったけど、あの時たまたまひらめいた1案をぶつけてみたら効果でたのであって、次善の策なんてなかったけど??って毎回思ってるから、雰囲気でやっていると思う、マジで。コミュニティのノリだと笑いが起きていいんですけど、少しでも勝率を上げるために、若手の前でド

    オレ的EXPLAIN技を語っちゃうゾ - Qiita
  • 高性能分散SQLエンジン「Trino」最速ガイド - NTT Communications Engineers' Blog

    こんにちは。なんの因果かNTTコミュニケーションズのエバンジェリストをやっている西塚です。 この記事は、NTT Communications Advent Calendar 2021 22日目の記事です。 5分でわかる「Trino」 「Trino」は、異なるデータソースに対しても高速でインタラクティブに分析ができる高性能分散SQLエンジンです。 以下の特徴を持っており、ビッグデータ分析を支える重要なOSS(オープンソースソフトウェア)の1つです。 SQL-on-Anything: Hadoopだけでなく従来のRDBMS(リレーショナルデータベース)やNoSQLまで、標準SQL(ANSI SQL)に準拠したアクセスをワンストップに提供 並列処理でビッグデータに対して容易にスケールアップ しかも高速(hiveの数十倍) Netflix, LinkedIn, Salesforce, Shopif

    高性能分散SQLエンジン「Trino」最速ガイド - NTT Communications Engineers' Blog
  • Modern Data Stack / モダンデータスタックというトレンドについて - satoshihirose.log

    はじめに Modern Data Stack ? Modern Data Stack の特徴やメリット、関連するトレンド データインフラのクラウドサービス化 / Data infrastructure as a service データ連携サービスの発展 ELT! ELT! ELT! Reverse ETL テンプレート化された SQL and YAML などによるデータの管理 セマンティックレイヤーの凋落と Headless BI 計算フレームワーク (Computation Frameworks) 分析プロセスの民主化、データガバナンスとデータメッシュの試み プロダクト組み込み用データサービス リアルタイム Analytics Engineer の登場 各社ファウンダーが考える Modern Data Stack さいごに Further Readings はじめに Modern Dat

    Modern Data Stack / モダンデータスタックというトレンドについて - satoshihirose.log
  • ゼロから作る時系列データベースエンジン

    軽量な時系列データベースエンジンをスクラッチで開発する機会があったので、どのように実装したのかを必要知識の解説を交えながらまとめていきます。 実装はGo言語によるものですが、記事のほとんどは言語非依存な内容となっています。 モチベーション 筆者は時系列データを扱うツールをいくつか開発しています。その中の一つであるAliは負荷テスト用のcliツールで、メトリクスをクライアント側でリアルタイム描画できるのが特徴です。リクエスト毎にレイテンシーなどの計測結果が際限なく書き込まれてくる中、同時に一定のクエリパフォーマンスが求められます。 これは言ってしまえば、簡易クエリ機能付きのpush型モニタリングシステムを単一ホストで実現するようなものです。 以前までの実装ではヒープ上の可変長配列にデータポイントを追加していくだけだったので、当然ながら時間の経過とともにメモリ使用量が増加していく問題を抱えて

    ゼロから作る時系列データベースエンジン
  • はじめての「簡単なお仕事」は簡単ではない。 - MonotaRO Tech Blog

    モノタロウでスマホアプリを担当しているuw_shioです。 今回は増員をしていった結果、各自がそれぞれ頑張るようなチームとなってしまった状況から、ペアワークをきっかけに、ペアプロ、モブプロが文化となってチームとしてワークできるようになったお話をします。 組織の規模が拡大していく過程において、属人化された業務を個人単位で行う働き方から組織としてワークする形へのシフトは避けて通れない道となります。そんな時に悩みの種となりやすいのが、業務の属人化やメンバーの育成ではないでしょうか。 部下や後輩に新しい業務を引き継ごうとしても時間がかかり上手くいかない、そんな経験ありませんか?私は過去に何度もありました。 例えば、アフリカーンスなど未知の言語を習得するというタスクをアサインされたとしたら、何から始めて良いか分からず漠然とした不安を感じるのではないでしょうか。新しいこと、とりわけ新しい業務に対しては

    はじめての「簡単なお仕事」は簡単ではない。 - MonotaRO Tech Blog