You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session. Dismiss alert
Pythonの仕様はPEP(Python Enhanced Propozal)、つまりPythonの仕様を拡張するための仕様を誰かが提起し、それをSteering Council(運営評議会)が決定することでPythonそのものに盛り込まれる。インターネットの仕様に詳しい人であれば、RFCみたいなものといえば伝わるだろうか。 ちなみに、昔からそうだったというわけではなく、それまでPythonの生みの親であるGuido van Rossumが一人で決めていたのが、2019年に引退を機に現在の運営体制になっており、その際の議論は、こちらに書いた。 CPython’s global interpreter lock (“GIL”) prevents multiple threads from executing Python code at the same time. The GIL is a
Python Software Foundationのステアリングカウンシル(Steering Council)は、Pythonのグローバルインタプリタロック(Global Interpreter Lock)を解消する方向で開発を進めていくことを明らかにしました。 グローバルインタプリタロックとは? グローバルインタプリタロックとは、その名前が示すとおりインタープリタ全体で1つのロックを持つことです。 これによりシングルスレッドのプログラムにおいては細かなロック制御が不要となって速度の向上がはかれる一方、マルチスレッドの平行性は制限されるという欠点があります。 また、スレッドセーフではないC言語などによるライブラリとの結合が容易となっています。 Pythonの標準実装であるCPythonでは、以前からグローバルインタプリタロックが採用されていました。 グローバルインタプリタロックを解消する
[2023.09.19 追記] 本記事の執筆にあたり参考にさせていただいたUdemy講座の講師の方より、記事内容についてコメントをいただいたため一部修正しました。 はじめに こんにちは、アノテーション テクニカルサポートの Shimizu です。 突然ですが、私も含めた Python 初心者に、以下のような人は多いのではないでしょうか。 昨今の AI ブームに乗って API でデータをやり取りする基本的な Python プログラムを PC 上で動かせたものの、それを Web アプリとして公開するまでのハードルが高く感じる。 ブラウザ操作の UI を実装するには Django などの Web フレームワークを習得したり、アプリとして公開するには Python が動作するサーバーを用意したりと、なんだか難しそう・・ そんな私にピッタリのUdemy講座を見つけたため、今回受講してみました。 Ch
JPCERT/CCは、2019年6月から継続して攻撃を行っている標的型攻撃グループDangerousPassword [1][2](CryptoMimicまたは、SnatchCryptoとも呼ばれる)に関連すると思われる、暗号資産交換事業者の開発者を狙った攻撃を5月末に確認しています。この攻撃は、マシン上にPythonやNode.jsがインストールされたWindows、macOS、Linux環境をターゲットとしたものです。 今回は、JPCERT/CCが確認した攻撃および使用されたマルウェアについて解説します。 Pythonマルウェアを起点としたWindows環境における攻撃 攻撃者は、QRコードを扱うためのPythonモジュール(https://github.com/mnooner256/pyqrcode)のbuilder.pyというファイルに不正なコードを挿入したものをあらかじめ用意し、
はじめに この記事を読んで得られること 対象読者 あまり説明しないこと 前提とするバージョン 参考となるレポジトリ 1. 開発環境の構築で使用したツール AWS Lambdaのコンテナサポートを採用 Poetry利用時に開発と本番環境の適切な管理でLambdaデプロイ問題を解決 Poetry利用時に起きた問題 Dockerfileを分けてデプロイできない問題を回避 Mutagen Composeを採用 Dockerの同期遅い問題 Mutagen Composeを利用 2. 開発で活用したPythonライブラリ パッケージ管理 Poetry Ryeも検討したものの採用せず ベースのライブラリ FastAPI Mangum Powertools for AWS Lambda リンター・フォーマッター Ruff Mypy 型アノテーション自動生成ツールの活用 Black テスト Pytest p
EDIT: このブログと似た内容の話をPyCon APAC2023にてお話ししました。 こちらの登壇資料も合わせてご覧いただけると幸いです こんにちはWantedlyの樋口です。 Pythonのパッケージングと配布は歴史が長く、多くのツール(ex. conda, pip, pipenv, poetry, rye...)が開発されてきました。これらの多様性はPythonが多くの人に使われ、継続的に改善されたゆえの賜物ですが、同時にこれらの理解を難しくしている要因にもなっていると感じます。 そこで本記事では、Pythonのパッケージングと配布の全体像を紹介します。パッケージングと配布が何か、なぜ重要なのか、そしてそれぞれのツールが何を解決しようとしているのかについて説明します。以下のような疑問を解決できることを想定しています。 パッケージングと配布の仕組みがなぜあるのか 多数あるツールが何を解
Pythonパッケージ管理ツール ryeの使い勝手がよかったので使用方法をまとめました。 ryeとは GitHub: https://github.com/mitsuhiko/rye flaskの作者である Armin Ronacher氏 (GitHubアカウント @mitsuhiko)が個人利用目的で作成した、Pythonのパッケージ関係管理ツールです。内部実装はRustです。 ryeが作成された思想がリポジトリ Should Rye Exist? のDiscussionページに書かれています。 Should Rye Exist?: XKCD #927 Disucssion中の図にあるように、従来のPythonのパッケージ管理は”様々な標準”が存在し、このばらつきを統一しようと新しくパッケージ管理ツールを導入しても、”新たな標準が追加されるだけ”となり、真のパッケージ管理の標準化を行えて
はじめに よくAWSの仕事をするので、開発環境をAWS Cloud9(以下Cloud9)で用意することがある。 IAM Roleが使えるのでAWS内の開発は便利なのだが、そのままPythonで開発しようとすると、2023/05/27時点でこう表示されるので、ちゃんと開発環境作らなくちゃね。という気持ちになる。 久々にLangChainやLlamaIndexやらで盛り上がってるし、Python環境でも作るか! と思い立った筆者。じゃあ何を準備すればいいんだっけ、と軽く調べただけでもpip, venv, pyenv, pipenv, poetryなどの選択肢がありすぎて、もうこの時点でげんなりする。Pythonのパッケージマネージャの周辺事情はずっと混沌としていたんだった…… ただ最近は比較的よさげなプロジェクトのRyeがあるので、今回はこれで環境を整えてみる。 Ryeとは 上で書いたような「
$ rye install optuna Collecting optuna Downloading optuna-3.1.1-py3-none-any.whl (365 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 365.7/365.7 kB 1.7 MB/s eta 0:00:00 Collecting alembic>=1.5.0 (from optuna) Downloading alembic-1.11.1-py3-none-any.whl (224 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 224.5/224.5 kB 2.3 MB/s eta 0:00:00 Collecting cmaes>=0.9.1 (from optuna) Downloading cmaes-0.9.1-py3
I started programming in Rust several years ago, and it has gradually changed the way I design programs in other programming languages, most notably in Python. Before I started using Rust, I was usually writing Python code in a very dynamic and type-loose way, without type hints, passing and returning dictionaries everywhere, and occasionally falling back to “stringly-typed” interfaces. However, a
はじめに Pythonは世界的にも人気のあるプログラミング言語ですが、実行速度については課題があります。Pythonの実行速度を高速化したい、という要求は根強く、これまでにも様々な処理系が開発されています。 この記事はPythonで書かれたコードを35000倍に高速化するにはどのような方法があるかについてまとめたものです。 この記事は: Pythonで書かれたアルゴリズムを35000倍に高速化する 事前コンパイル、並列化、SIMD演算を駆使する 最終的に44000倍まで高速化できた なぜ35000倍? 2023年5月2日にModular社よりPythonの使いやすさとC言語の性能を兼ね備える新しいプログラミング言語、Mojoの開発について発表がありました。低レベルのハードウェア向けにコンパイル可能なこと、文法的にはPythonを踏襲しており、既存のPythonライブラリを利用可能であること
LLVMやSwiftを作ったChris LattnerがCEOをやっている会社が、Pythonの使用感とC言語並の性能を併せ持つ言語としてMojoをアナウンスした。 まだ手元で試せる状態でリリースされてはいないが、最大35000倍Pythonより速いという。 Mojo🔥 combines the usability of Python with the performance of C, unlocking unparalleled programmability of AI hardware and extensibility of AI models. Also, it's up to 35000x faster than Python 🤯 and … deploys 🏎 pic.twitter.com/tjT09U4F80— Modular (@Modular_AI) May
chat-hatenablogをpip installでインストール可能にした - $shibayu36->blog; にて、pip installで直接CLIツールをインストールできるようにした。 pip install git+https://github.com/shibayu36/chat-hatenablog.git この時に調べたことをメモしておく。 やったこと setup.pyを配置し、entry_points.console_scriptsにCLIとして動かしたいものを指定するだけ。 import os from setuptools import setup, find_packages here = os.path.abspath(os.path.dirname(__file__)) about = {} with open(os.path.join(here, "ch
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く