タグ

機械学習とあとで読むに関するmasato30のブックマーク (4)

  • ゼロから作るDeep Learning

    ディープラーニングの格的な入門書。外部のライブラリに頼らずに、Python 3によってゼロからディープラーニングを作ることで、ディープラーニングの原理を楽しく学びます。ディープラーニングやニューラルネットワークの基礎だけでなく、誤差逆伝播法や畳み込みニューラルネットワークなども実装レベルで理解できます。ハイパーパラメータの決め方や重みの初期値といった実践的なテクニック、Batch NormalizationやDropout、Adamといった最近のトレンド、自動運転や画像生成、強化学習などの応用例、さらには、なぜディープラーニングは優れているのか? なぜ層を深くすると認識精度がよくなるのか? といった“Why”に関する問題も取り上げます。 関連ファイル サンプルコード 正誤表 ここで紹介する正誤表には、書籍発行後に気づいた誤植や更新された情報を掲載しています。以下のリストに記載の年月は、正

    ゼロから作るDeep Learning
  • 特にプログラマーでもデータサイエンティストでも�ないけど、Tensorflowを1ヶ月触ったので超分かりやすく解説 - Qiita

    特にプログラマーでもデータサイエンティストでも�ないけど、Tensorflowを1ヶ月触ったので超分かりやすく解説Python機械学習DeepLearningTensorFlow これ書くだけで土日2日間まるまる潰れてしまった。 学んだ内容に沿っているので、順に読み進めるに従ってコードの話になっていきます。 Tensorflow触ってみたい/みたけど、いろいろまだ理解できてない!という方向けに書きました。 ※2018年10月4日追記 大分古い記事なのでリンク切れや公式ドキュメントが大分変更されている可能性が高いです。 この記事のTensorflowは ver0.4~0.7くらいだった気がするので ver2.0~となりそうな現在は文章の大半が何を参考にしているのか分からないかもしれません。 1: Deep Learningってそもそも何してるの? 専門の人からはご指摘入りそうですが、要は回帰

    特にプログラマーでもデータサイエンティストでも�ないけど、Tensorflowを1ヶ月触ったので超分かりやすく解説 - Qiita
  • 機械学習とNode.jsを使用してInstagramユーザの性別を知る | POSTD

    この記事の目的は、機械学習ソリューションを大規模に展開するための実用的なガイドを提供することです。全てのものが正しいと立証されたわけでもありませんし、また最適であるとも限りません。私たちが実際に展開した際には、いくつかのトレードオフもありました。アカデミックな環境であれば必要とされるであろうあらゆる論拠の積み上げを必ずしも行うことなく、随時簡便な方法で済ませたところもあり、それについてはおわびします。そのような箇所は投稿を通じて明確に示しながらも、この記事が皆さんの役に立つことを願っています。 少し背景から説明します。TOTEMS AnalyticsはInstagramの(ハッシュタグと関連のあるオーディエンスやコミュニティの)解析を行います。この1年で、Instagramのオーディエンスに関する統計情報への需要はかつてないほどクライアントから寄せられています。そこで私たちは6カ月前、プラ

    機械学習とNode.jsを使用してInstagramユーザの性別を知る | POSTD
  • 最適化超入門

    2. 過去の発表 2014年11月29日 TokyoWebMining #40 2 専門と一切関係ナシ 2chテキストマイニングとまとめサイトの自動生成 セクシー女優で学ぶ画像分類入門 3. 所属 自己紹介 2014年11月29日 TokyoWebMining #40 3 Twitter ID tkm2261 専門 経営工学/最適化 某データ分析会社 業務 分析何でも屋さん 機械学習との出会い 当時の研究が実用性 皆無 精神の逃げ道として 機械学習 を開始 研究が 詰んで、 趣味職に 言語、画像と幅広く 遊んでます

    最適化超入門
  • 1