タグ

こ交互作用とき共分散分析に関するmidnightseminarのブックマーク (2)

  • [PDF]Rで学ぶ回帰分析|補足:重回帰分析における交互作用の検討

    Rで学ぶ回帰分析 補足:重回帰分析における交互作用の検討 M2 新屋裕太 2013/07/10 (復習)回帰分析について • 変数間の因果関係の方向性を仮定し、1つまたは複数の独立 変数によって従属変数をどれくらい説明できるのかを検討する 手法 • 単回帰分析:独立変数が1つの場合 • 重回帰分析:独立変数が2つ以上の場合 (例)ワンルームマンションの家賃を、ワンルームマンションの条件から、予 測する場合 家賃 駅からの距離 築年数 部屋の広さ バスタイプ <独立変数> <従属変数> etc… (復習)重回帰分析について • 重回帰分析では、複数個の独立変数x1,x2,・・・,xiと従属変数yの間 に、以下のような線形の関係があることを仮定する • y = a + b1x1 + b2x2 +・・・+ bixi + e (重回帰モデル) • y^= a + b1x1 + b2x2 +・・・+

    midnightseminar
    midnightseminar 2014/01/22
    線形モデルの交互作用等について検討している。基本的に、重回帰モデルだがカテゴリ変数が含まれる場合を集まっていて、要は共分散分析。
  • 確率・統計 (15) 共分散分析(ANCOVA)

    「分散分析法(ANOVA)」は、各集団の因子(装置ごとの製品処理時間やクラス別の学力テスト結果など)に対する「要因効果」、すなわち全体の平均と各集団における平均の差が、その要因(装置やクラス)だけに依存していることを前提条件としています。しかし、標の抽出が無作為に行われていないような場合、他の要因によって集団間の差が生じてしまう可能性があります。この影響をできるだけ小さくすることを目的とした検定法として、今回は「共分散分析(ANCOVA)」を紹介します。 1) 名義尺度の線形重回帰モデル 以前紹介した「線形重回帰モデル (Linear Multiple Regression Model)」では、独立変数が連続量であることを前提としていました。しかし、名義尺度の場合も「ダミー変数(Dummy Variable ; Indicator Variable)」を利用することで重回帰分析に含めるこ

    確率・統計 (15) 共分散分析(ANCOVA)
  • 1