連載目次 用語解説 機械学習におけるバーニーおじさんのルール(Uncle Bernie's rule)とは、ニューラルネットワークの重みパラメーターの数に対して、最低限その10倍以上の訓練データ量が必要となる、とする経験則のことである。訓練データの数量の目安とされるが、定理ではなく、あくまで経験則である。その出典(後述)も古く(=最近のディープラーニングに適用できるかどうかは不明で)、数学的に証明されているわけでもないので注意が必要だ。 孫引用になってしまうが1990年(NIPS 1989)の論文の一節を引用すると、 Rules of thumb suggesting the number of samples required for specific distributions could be useful for practical problems. Widrow has sug