用語「適合率」について説明。二値分類タスク(問題)に対する評価指標の一つで、機械学習モデルによる予測値が「陽性」で、かつ、実際の正解値も「陽性」だった正解数(=TP)を、「陽性」と予測した全てのデータ数(=TP+FP)で割った値を指す。 連載目次 用語解説 統計学/機械学習における適合率(Precision、精密さ、精密度、精度)とは、(基本的に)二値分類のタスク(問題)に対する評価指標の一つで、「陽性(Positive、正例)」と予測したデータの中で実際に「陽性」が正解だった確率である。0.0(=0%)~1.0(=100%)の範囲の値になり、1.0に近づくほどより良い。 言い換えると適合率は、機械学習モデルによる予測が陽性だった場合に、どれくらい正解に「適合」できるか、を表現したものだ。適合率の計算は、予測値が「陽性」で、かつ、実際の正解値も「陽性」だった正解数(=TP)を、「陽性」と予